This is a PyTorch implementation of the paper Accessing Higher-level Representations in Sequential Transformers with Feedback Memory.
Normal transformers process tokens in parallel. Each transformer layer pays attention to the outputs of the previous layer. Feedback transformer pays attention to the output of all layers in previous steps. So this adds recurrence, and we need to process token-by-token. This slows down the training significantly (about 5X - 10X depending on the sequence length). However, when predicting Feedback Transformer is faster because you can predict the next token if you cache the memory vectors.
In order to speed up the training, the paper discusses starting with a short sequence length and gradually increasing it. They also discuss using a pretrained parallel transformer as the starting point.
The original feedback transformer doesn't keep the outputs of all layers. Instead it keeps weighted sum of the output of all layers. This reduces the memory used for caching during prediction. The first half of this file implements this.
The updated feedback transformer shares weights and used to calculate keys and values among the layers. We then calculate the keys and values for each step only once and keep them cached. The second half of this file implements this. We implemented a custom PyTorch function to improve performance.
Here's the training code and a notebook for training a feedback transformer on Tiny Shakespeare dataset.
42import math
43from typing import Optional
44
45import torch
46from torch import nn
47
48from labml_nn.transformers.feed_forward import FeedForward
49from labml_nn.transformers.mha import PrepareForMultiHeadAttention
50from labml_nn.utils import clone_module_list
This module computes recurrent attention similar to attention from original transformers paper.
53class FeedbackAttention(nn.Module):
d_model
is the number of features in the transformer dropout_prob
is the attention dropout probability is_kv_precomputed
is whether key, value tensors are already calculated64 def __init__(self, heads: int, d_model: int, dropout_prob: float = 0.1, *,
65 is_kv_precomputed: bool = False):
73 super().__init__()
Number of features per head
76 self.d_k = d_model // heads
78 self.heads = heads
These transform the query
multi-headed attention.
81 self.query = PrepareForMultiHeadAttention(d_model, heads, self.d_k, bias=False)
These transform the key
and value
for multi-headed attention.
83 if not is_kv_precomputed:
84 self.key = PrepareForMultiHeadAttention(d_model, heads, self.d_k, bias=False)
85 self.value = PrepareForMultiHeadAttention(d_model, heads, self.d_k, bias=True)
Keys and values are already calculated
87 else:
88 self.key = None
89 self.value = None
Output layer
92 self.output = nn.Linear(d_model, d_model)
Dropout
94 self.dropout = nn.Dropout(dropout_prob)
Scaling factor before the softmax
96 self.scale = 1 / math.sqrt(self.d_k)
Softmax for attention along the time dimension of key
99 self.softmax = nn.Softmax(dim=0)
Number of relative positions
102 self.P = 2 ** 12
Relative positional embeddings for key relative to the query.
105 self.key_pos_embeddings = nn.Parameter(torch.zeros((self.P, heads, self.d_k)), requires_grad=True)
Relative positional embedding bias for key relative to the query.
107 self.key_pos_bias = nn.Parameter(torch.zeros((self.P, heads)), requires_grad=True)
Positional embeddings for the query is independent of the position of the query
109 self.query_pos_bias = nn.Parameter(torch.zeros((heads, self.d_k)), requires_grad=True)
We store attentions so that it can be used for logging, or other computations if needed
112 self.attn = None
We use relative positional encodings for attention, similar to relative multi-head attention form Transformer-XL paper.
Attention from current step's query to key in step (relative to current step) is,
where , are linear transformations of original embeddings and are linear transformations of positional encodings .
We replace term with .
114 def get_scores(self, query: torch.Tensor, key: torch.Tensor):
142 key_pos_emb = self.key_pos_embeddings[-key.shape[0]:]
144 query_pos_bias = self.query_pos_bias[None, :, :]
146 key_pos_bias = self.key_pos_bias[-key.shape[0]:]
149 ac = torch.einsum('bhd,jbhd->jbh', query + query_pos_bias, key)
151 bd = torch.einsum('bhd,jhd->jbh', query, key_pos_emb) + key_pos_bias[:, None, :]
154 return ac + bd
query
has shape [batch_size, d_model]
key
and value
has shape [seq_len, batch_size, d_model]
156 def forward(self, *,
157 query: torch.Tensor,
158 key: torch.Tensor,
159 value: torch.Tensor):
Prepare query
, key
and value
for attention computation key
and value
will then have shape [seq_len, batch_size, heads, d_k]
and query
will have shape [batch_size, heads, d_k]
168 query = self.query(query)
169 if self.key:
170 key = self.key(key)
171 if self.value:
172 value = self.value(value)
Compute attention scores. Results in a tensor of shape [seq_len, batch_size, heads]
176 scores = self.get_scores(query, key)
Scale scores
179 scores *= self.scale
Softmax
182 attn = self.softmax(scores)
Apply dropout
185 attn = self.dropout(attn)
Multiply by the values
188 x = torch.einsum("jbh,jbhd->bhd", attn, value)
Concatenate multiple heads
191 x = x.reshape(x.shape[0], -1)
Output layer
194 return self.output(x)
This implements a single transformer layer in the feedback transformer.
197class FeedbackTransformerLayer(nn.Module):
d_model
is the number of features in the transformer attn
is the feedback attention module feed_forward
is the position-wise feed forward layer dropout_prob
is the dropout probability for dropout layers after attention and feed-forward204 def __init__(self, *,
205 d_model: int,
206 attn: FeedbackAttention,
207 feed_forward: FeedForward,
208 dropout_prob: float):
215 super().__init__()
Transformer size
217 self.size = d_model
219 self.attn = attn
220 self.feed_forward = feed_forward
221 self.dropout = nn.Dropout(dropout_prob)
Normalization layers
224 self.norm_self_attn = nn.LayerNorm([d_model])
225 self.norm_ff = nn.LayerNorm([d_model])
227 def forward(self, *,
228 x: torch.Tensor,
229 key: Optional[torch.Tensor],
230 value: Optional[torch.Tensor]):
If there is memory
232 if key is not None:
Normalize the vectors before doing self attention
234 z = self.norm_self_attn(x)
Run through self attention, i.e. keys and values are from self
236 self_attn = self.attn(query=z, key=key, value=value)
Add the self attention results
238 x = x + self.dropout(self_attn)
Normalize for feed-forward
241 z = self.norm_ff(x)
Pass through the feed-forward network
243 ff = self.feed_forward(z)
Add the feed-forward results back
245 x = x + self.dropout(ff)
248 return x
251class FeedbackTransformer(nn.Module):
layer
is the feedback transformer layer, which we clone for each layer n_layers
is the number of layers in the transformer256 def __init__(self, layer: FeedbackTransformerLayer, n_layers: int):
262 super().__init__()
Make copies of the transformer layer
264 self.layers = clone_module_list(layer, n_layers)
Final normalization layer
266 self.norm = nn.LayerNorm([layer.size])
Memory vectors are computed as a weighted sum of representations of each layer. This is the weights parameter for that.
269 self.weights = nn.Parameter(torch.ones(n_layers + 1), requires_grad=True)
Softmax for weights before taking the weighted sum
271 self.softmax = nn.Softmax(0)
x_seq
is the input with shape [seq_len, batch_size, d_model]
273 def forward(self, x_seq: torch.Tensor):
Split the input to a list along the sequence axis
279 x_seq = torch.unbind(x_seq, dim=0)
List to store the outputs
281 res = []
List to store the memory vectors
283 mem = []
For each input step
285 for x in x_seq:
List to store layer outputs
287 layer_outputs = [x]
If there is memory, stack them into a vector
290 mem_tensor = torch.stack(mem) if mem else None
Run through each layer
293 for layer in self.layers:
Get layer output
295 x = layer(x=x, key=mem_tensor, value=mem_tensor)
Append them to the list of layer outputs
297 layer_outputs.append(x)
Stack the layer outputs to a tensor
300 layer_outputs = torch.stack(layer_outputs)
Calculate the memory vector as a weighted sum of layer outputs
302 mem.append(torch.einsum('lbd,l->bd', layer_outputs, self.softmax(self.weights)))
Append the output to results
304 res.append(x)
Stack the output tensors
307 res = torch.stack(res)
Normalize the output
309 return self.norm(res)
We implement a custom function instead of appending to a python list and then doing torch.stack
. This greatly improves the performance over calling torch.stack
at each step along the sequence. Everytime torch.stack
is called, it creates a new tensor, while this method and the accompanying class Stack
share memory for each step.
316class StackFunction(torch.autograd.Function):
ctx
is the context of the function (which lets us cache stuff) memory
is the shared memory tensor where we stack and store the values of each step (keys & values) memory_grad
is the shared memory tensor to store and accumulate gradients of each step last
is the last value stacked n
is the number of steps (i.e. size of the stack)This returns the stacked tensor for steps upto n
.
328 @staticmethod
329 def forward(ctx, memory, memory_grad, last, n):
Cache accumulated gradients
341 ctx._mem_grad = memory_grad
Cache the size of the stack
343 ctx._n = n
Return the stack
345 return memory[:n + 1]
grad_output
is the gradient with respect to the output of about forward
functionThis accumulates the gradients in the shared memory tensor and return the gradients with respect to the last
result in the stack.
347 @staticmethod
348 def backward(ctx, grad_output):
Get the current size of the stack
356 n = ctx._n
Get the accumulated gradients
358 memory_grad = ctx._mem_grad
Add the gradients
360 memory_grad[:n + 1] += grad_output
Return the gradients w.r.t to last value in the stack
362 return None, None, memory_grad[n], None
365class Stack:
max_len
is the maximum size of the stack372 def __init__(self, max_len: int):
376 self.max_len = max_len
377 self.memory = None
378 self.memory_grad = None
379 self.last = None
380 self.n = -1
381 self.last_get_n = -1
n
is the size of the stack value
is the tensor that needs to be added to the stack383 def append(self, n: int, value: torch.Tensor):
You need to get (use) the stack after adding a value. Otherwise this implementation fails
391 assert n == 0 or self.last_get_n == n - 1, f"{n}, {self.last_get_n}"
Do this without gradients
394 with torch.no_grad():
Initialize the shared memory tensor to keep the stack
396 if self.memory is None or self.memory.shape[1:] != value.shape:
This should only happen when the stack is empty
398 assert n == 0
Create a tensor for the stack
400 self.memory = value.new_zeros(self.max_len, *value.shape, requires_grad=False)
Create a tensor to accumulate the gradients
402 self.memory_grad = value.new_zeros(self.memory.shape, requires_grad=False)
The memory is already initialized but we are resetting the stack.
This could have been another function like reset
, but we found this easier to use.
407 elif n == 0:
Reset accumulated gradients
409 self.memory_grad.fill_(0.)
Set the value in the correct position of the stack
412 self.memory.data[n] = value.detach()
Keep track of the stack (for debugging)
414 self.n = n
Keep track of the last value added to the stack. We need this to be passed on to StackFunction
in order to get the gradients propagated backwards.
419 self.last = value
Returns the stack
421 def get(self):
Keep track of the size of the stack when it was used. This is used for a sanity check in append
.
428 self.last_get_n = self.n
Take it all through StackFunction
so that StackFunction.backwards
is called by PyTorch during backpropagation.
431 return StackFunction.apply(self.memory, self.memory_grad, self.last, self.n)
To release memory
433 def free(self):
438 self.memory = None
439 self.memory_grad = None
440 self.last = None
This is the updated feedback transformer module that caches the keys and values.
443class FeedbackTransformerKV(nn.Module):
layer
is the feedback transformer layer, which we clone for each layer n_layers
is the number of layers in the transformer d_model
is the number of features in the transformer 450 def __init__(self, layer: FeedbackTransformerLayer, n_layers: int, d_model: int, heads: int):
458 super().__init__()
Make copies of the transformer layer
460 self.layers = clone_module_list(layer, n_layers)
Final normalization layer
462 self.norm = nn.LayerNorm([layer.size])
Memory vectors are computed as a weighted sum of representations of each layer. This is the weights parameter for that.
465 self.weights = nn.Parameter(torch.ones(n_layers + 1), requires_grad=True)
Softmax for weights before taking the weighted sum
467 self.softmax = nn.Softmax(0)
Number of features in a head
470 d_k = d_model // heads
Module to transform embeddings (memory) to get keys
472 self.key = PrepareForMultiHeadAttention(d_model, heads, d_k, bias=False)
Module to transform embeddings (memory) to get keys
474 self.value = PrepareForMultiHeadAttention(d_model, heads, d_k, bias=False)
Memory for stacked keys
477 self.mem_key = Stack(512)
Memory for stacked values
479 self.mem_value = Stack(512)
x_seq
is the input with shape [seq_len, batch_size, d_model]
481 def forward(self, x_seq: torch.Tensor):
Split the input to a list along the sequence axis
487 x_seq = torch.unbind(x_seq, dim=0)
List to store the outputs
489 res = []
For each input step
491 for step, x in enumerate(x_seq):
List to store layer outputs
493 layer_outputs = [x]
Stack of keys and values
496 key_tensor = None
497 value_tensor = None
Get the keys and values tensors if we are beyond the initial step
499 if step > 0:
500 key_tensor = self.mem_key.get()
501 value_tensor = self.mem_value.get()
Run through each layer
504 for layer in self.layers:
Get layer output
506 x = layer(x=x, key=key_tensor, value=value_tensor)
Append them to the list of layer outputs
508 layer_outputs.append(x)
Stack the layer outputs to a tensor
511 layer_outputs = torch.stack(layer_outputs)
Calculate the memory vector as a weighted sum of layer outputs
513 mem = torch.einsum('lbd,l->bd', layer_outputs, self.softmax(self.weights))
Calculate the keys from memory and add it to the stack
515 self.mem_key.append(step, self.key(mem))
Calculate the values from memory and add it to the stack
517 self.mem_value.append(step, self.value(mem))
Append the output to results
519 res.append(x)
Stack the output tensors
522 res = torch.stack(res)
Normalize the output
524 return self.norm(res)
526 def free(self):
527 self.mem_key.free()
528 self.mem_value.free()