This trains a feedback transformer model for auto-regression. You can pick the original feedback transformer or the new version where the keys and values are precalculated.
Here's a Colab notebook for training a feedback transformer on Tiny Shakespeare dataset.
18import torch
19from torch import nn
20
21from labml import experiment
22from labml.configs import option
23from labml.utils.pytorch import get_modules
24from labml_helpers.module import Module
25
26from labml_nn.experiments.nlp_autoregression import NLPAutoRegressionConfigs
27from labml_nn.transformers import Encoder, Generator, TransformerConfigs
28from labml_nn.transformers.utils import subsequent_mask
31class AutoregressiveModel(Module):
36 def __init__(self, n_vocab: int, d_model: int, transformer: Module):
37 super().__init__()
Token embedding module
39 self.src_embed = nn.Embedding(n_vocab, d_model)
40 self.transformer = transformer
41 self.generator = nn.Linear(d_model, n_vocab)
43 def forward(self, x: torch.Tensor):
Embed the tokens
45 x = self.src_embed(x)
Run it through the the transformer
47 res = self.transformer(x)
Generate logits of the next token
49 return self.generator(res), None
52class Configs(NLPAutoRegressionConfigs):
59 model: AutoregressiveModel
60
61 d_model: int = 512
62 heads: int = 8
63 dropout: float = 0.0
64 d_ff: int = 2048
65 n_layers: int = 6
Create original feedback transformer.
68@option(Configs.model)
69def feedback_transformer(c: Configs):
73 from labml_nn.transformers.feedback import FeedbackTransformer, FeedbackTransformerLayer, \
74 FeedbackAttention, FeedForward
75
76 return AutoregressiveModel(
77 c.n_tokens, c.d_model,
78 FeedbackTransformer(
79 FeedbackTransformerLayer(d_model=c.d_model,
80 attn=FeedbackAttention(c.heads, c.d_model, c.dropout),
81 feed_forward=FeedForward(c.d_model, c.d_ff, c.dropout),
82 dropout_prob=c.dropout),
83 c.n_layers)).to(c.device)
Create updated feedback transformer, with precalculated keys and values.
86@option(Configs.model)
87def feedback_transformer_kv(c: Configs):
91 from labml_nn.transformers.feedback import FeedbackTransformerKV, FeedbackTransformerLayer, \
92 FeedbackAttention, FeedForward
93
94 return AutoregressiveModel(
95 c.n_tokens, c.d_model,
96 FeedbackTransformerKV(
97 FeedbackTransformerLayer(d_model=c.d_model,
98 attn=FeedbackAttention(c.heads, c.d_model, c.dropout,
99 is_kv_precomputed=True),
100 feed_forward=FeedForward(c.d_model, c.d_ff, c.dropout),
101 dropout_prob=c.dropout),
102 c.n_layers, c.d_model, c.heads)).to(c.device)
105def main():
Create experiment
107 experiment.create(name="feedback_transformer")
Create configs
109 conf = Configs()
Load configurations
111 experiment.configs(conf,
A dictionary of configurations to override
113 {'tokenizer': 'character',
114 'text': 'tiny_shakespeare',
115 'optimizer.learning_rate': 1.0,
116 'optimizer.optimizer': 'Noam',
117 'prompt': 'It is',
118 'prompt_separator': '',
Use feedback_transformer
for original feedback transformer
121 'model': 'feedback_transformer_kv',
122
123 'train_loader': 'shuffled_train_loader',
124 'valid_loader': 'shuffled_valid_loader',
125
126 'seq_len': 128,
127 'epochs': 128,
128 'batch_size': 64,
129 'inner_iterations': 25})
Set models for saving and loading
132 experiment.add_pytorch_models(get_modules(conf))
Start the experiment
135 with experiment.start():
Run the training loop
137 conf.run()
138
139
140if __name__ == '__main__':
141 main()