This is a PyTorch implementation of the paper Graph Attention Networks.
GATs work on graph data. A graph consists of nodes and edges connecting nodes. For example, in Cora dataset the nodes are research papers and the edges are citations that connect the papers.
GAT uses masked self-attention, kind of similar to transformers. GAT consists of graph attention layers stacked on top of each other. Each graph attention layer gets node embeddings as inputs and outputs transformed embeddings. The node embeddings pay attention to the embeddings of other nodes it's connected to. The details of graph attention layers are included alongside the implementation.
Here is the training code for training a two-layer GAT on Cora dataset.
28import torch
29from torch import nn
30
31from labml_helpers.module import Module
This is a single graph attention layer. A GAT is made up of multiple such layers.
It takes , where as input and outputs , where .
34class GraphAttentionLayer(Module):
in_features
, , is the number of input features per node out_features
, , is the number of output features per node n_heads
, , is the number of attention heads is_concat
whether the multi-head results should be concatenated or averaged dropout
is the dropout probability leaky_relu_negative_slope
is the negative slope for leaky relu activation48 def __init__(self, in_features: int, out_features: int, n_heads: int,
49 is_concat: bool = True,
50 dropout: float = 0.6,
51 leaky_relu_negative_slope: float = 0.2):
60 super().__init__()
61
62 self.is_concat = is_concat
63 self.n_heads = n_heads
Calculate the number of dimensions per head
66 if is_concat:
67 assert out_features % n_heads == 0
If we are concatenating the multiple heads
69 self.n_hidden = out_features // n_heads
70 else:
If we are averaging the multiple heads
72 self.n_hidden = out_features
Linear layer for initial transformation; i.e. to transform the node embeddings before self-attention
76 self.linear = nn.Linear(in_features, self.n_hidden * n_heads, bias=False)
Linear layer to compute attention score
78 self.attn = nn.Linear(self.n_hidden * 2, 1, bias=False)
The activation for attention score
80 self.activation = nn.LeakyReLU(negative_slope=leaky_relu_negative_slope)
Softmax to compute attention
82 self.softmax = nn.Softmax(dim=1)
Dropout layer to be applied for attention
84 self.dropout = nn.Dropout(dropout)
h
, is the input node embeddings of shape [n_nodes, in_features]
. adj_mat
is the adjacency matrix of shape [n_nodes, n_nodes, n_heads]
. We use shape [n_nodes, n_nodes, 1]
since the adjacency is the same for each head.Adjacency matrix represent the edges (or connections) among nodes. adj_mat[i][j]
is True
if there is an edge from node i
to node j
.
86 def forward(self, h: torch.Tensor, adj_mat: torch.Tensor):
Number of nodes
97 n_nodes = h.shape[0]
The initial transformation, for each head. We do single linear transformation and then split it up for each head.
102 g = self.linear(h).view(n_nodes, self.n_heads, self.n_hidden)
We calculate these for each head . We have omitted for simplicity.
is the attention score (importance) from node to node . We calculate this for each head.
is the attention mechanism, that calculates the attention score. The paper concatenates , and does a linear transformation with a weight vector followed by a .
First we calculate for all pairs of .
g_repeat
gets where each node embedding is repeated n_nodes
times.
133 g_repeat = g.repeat(n_nodes, 1, 1)
g_repeat_interleave
gets where each node embedding is repeated n_nodes
times.
138 g_repeat_interleave = g.repeat_interleave(n_nodes, dim=0)
Now we concatenate to get
146 g_concat = torch.cat([g_repeat_interleave, g_repeat], dim=-1)
Reshape so that g_concat[i, j]
is
148 g_concat = g_concat.view(n_nodes, n_nodes, self.n_heads, 2 * self.n_hidden)
Calculate e
is of shape [n_nodes, n_nodes, n_heads, 1]
156 e = self.activation(self.attn(g_concat))
Remove the last dimension of size 1
158 e = e.squeeze(-1)
The adjacency matrix should have shape [n_nodes, n_nodes, n_heads]
or[n_nodes, n_nodes, 1]
162 assert adj_mat.shape[0] == 1 or adj_mat.shape[0] == n_nodes
163 assert adj_mat.shape[1] == 1 or adj_mat.shape[1] == n_nodes
164 assert adj_mat.shape[2] == 1 or adj_mat.shape[2] == self.n_heads
Mask based on adjacency matrix. is set to if there is no edge from to .
167 e = e.masked_fill(adj_mat == 0, float('-inf'))
We then normalize attention scores (or coefficients)
where is the set of nodes connected to .
We do this by setting unconnected to which makes for unconnected pairs.
177 a = self.softmax(e)
Apply dropout regularization
180 a = self.dropout(a)
Calculate final output for each head
Note: The paper includes the final activation in We have omitted this from the Graph Attention Layer implementation and use it on the GAT model to match with how other PyTorch modules are defined - activation as a separate layer.
189 attn_res = torch.einsum('ijh,jhf->ihf', a, g)
Concatenate the heads
192 if self.is_concat:
194 return attn_res.reshape(n_nodes, self.n_heads * self.n_hidden)
Take the mean of the heads
196 else:
198 return attn_res.mean(dim=1)