11import argparse
12from pathlib import Path
13
14import torch
15
16from labml import lab, monit
17from labml_nn.diffusion.stable_diffusion.sampler.ddim import DDIMSampler
18from labml_nn.diffusion.stable_diffusion.util import load_model, load_img, save_images, set_seed
21class Img2Img:
checkpoint_path
is the path of the checkpoint ddim_steps
is the number of sampling steps ddim_eta
is the DDIM sampling constant26 def __init__(self, *, checkpoint_path: Path,
27 ddim_steps: int = 50,
28 ddim_eta: float = 0.0):
34 self.ddim_steps = ddim_steps
37 self.model = load_model(checkpoint_path)
Get device
39 self.device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
Move the model to device
41 self.model.to(self.device)
Initialize DDIM sampler
44 self.sampler = DDIMSampler(self.model,
45 n_steps=ddim_steps,
46 ddim_eta=ddim_eta)
dest_path
is the path to store the generated images orig_img
is the image to transform strength
specifies how much of the original image should not be preserved batch_size
is the number of images to generate in a batch prompt
is the prompt to generate images with uncond_scale
is the unconditional guidance scale . This is used for 48 @torch.no_grad()
49 def __call__(self, *,
50 dest_path: str,
51 orig_img: str,
52 strength: float,
53 batch_size: int = 3,
54 prompt: str,
55 uncond_scale: float = 5.0,
56 ):
Make a batch of prompts
67 prompts = batch_size * [prompt]
Load image
69 orig_image = load_img(orig_img).to(self.device)
Encode the image in the latent space and make batch_size
copies of it
71 orig = self.model.autoencoder_encode(orig_image).repeat(batch_size, 1, 1, 1)
Get the number of steps to diffuse the original
74 assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]'
75 t_index = int(strength * self.ddim_steps)
AMP auto casting
78 with torch.cuda.amp.autocast():
In unconditional scaling is not get the embeddings for empty prompts (no conditioning).
80 if uncond_scale != 1.0:
81 un_cond = self.model.get_text_conditioning(batch_size * [""])
82 else:
83 un_cond = None
Get the prompt embeddings
85 cond = self.model.get_text_conditioning(prompts)
Add noise to the original image
87 x = self.sampler.q_sample(orig, t_index)
Reconstruct from the noisy image
89 x = self.sampler.paint(x, cond, t_index,
90 uncond_scale=uncond_scale,
91 uncond_cond=un_cond)
Decode the image from the autoencoder
93 images = self.model.autoencoder_decode(x)
Save images
96 save_images(images, dest_path, 'img_')
99def main():
103 parser = argparse.ArgumentParser()
104
105 parser.add_argument(
106 "--prompt",
107 type=str,
108 nargs="?",
109 default="a painting of a cute monkey playing guitar",
110 help="the prompt to render"
111 )
112
113 parser.add_argument(
114 "--orig-img",
115 type=str,
116 nargs="?",
117 help="path to the input image"
118 )
119
120 parser.add_argument("--batch_size", type=int, default=4, help="batch size", )
121 parser.add_argument("--steps", type=int, default=50, help="number of ddim sampling steps")
122
123 parser.add_argument("--scale", type=float, default=5.0,
124 help="unconditional guidance scale: "
125 "eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))")
126
127 parser.add_argument("--strength", type=float, default=0.75,
128 help="strength for noise: "
129 " 1.0 corresponds to full destruction of information in init image")
130
131 opt = parser.parse_args()
132 set_seed(42)
133
134 img2img = Img2Img(checkpoint_path=lab.get_data_path() / 'stable-diffusion' / 'sd-v1-4.ckpt',
135 ddim_steps=opt.steps)
136
137 with monit.section('Generate'):
138 img2img(
139 dest_path='outputs',
140 orig_img=opt.orig_img,
141 strength=opt.strength,
142 batch_size=opt.batch_size,
143 prompt=opt.prompt,
144 uncond_scale=opt.scale)
148if __name__ == "__main__":
149 main()