Latent Diffusion Models

Latent diffusion models use an auto-encoder to map between image space and latent space. The diffusion model works on the latent space, which makes it a lot easier to train. It is based on paper High-Resolution Image Synthesis with Latent Diffusion Models.

They use a pre-trained auto-encoder and train the diffusion U-Net on the latent space of the pre-trained auto-encoder.

For a simpler diffusion implementation refer to our DDPM implementation. We use same notations for , schedules, etc.

24from typing import List
26import torch
27import torch.nn as nn
29from labml_nn.diffusion.stable_diffusion.model.autoencoder import Autoencoder
30from labml_nn.diffusion.stable_diffusion.model.clip_embedder import CLIPTextEmbedder
31from labml_nn.diffusion.stable_diffusion.model.unet import UNetModel

This is an empty wrapper class around the U-Net. We keep this to have the same model structure as CompVis/stable-diffusion so that we do not have to map the checkpoint weights explicitly.

34class DiffusionWrapper(nn.Module):
42    def __init__(self, diffusion_model: UNetModel):
43        super().__init__()
44        self.diffusion_model = diffusion_model
46    def forward(self, x: torch.Tensor, time_steps: torch.Tensor, context: torch.Tensor):
47        return self.diffusion_model(x, time_steps, context)

Latent diffusion model

This contains following components:

50class LatentDiffusion(nn.Module):
60    model: DiffusionWrapper
61    first_stage_model: Autoencoder
62    cond_stage_model: CLIPTextEmbedder
  • unet_model is the U-Net that predicts noise , in latent space
  • autoencoder is the AutoEncoder
  • clip_embedder is the CLIP embeddings generator
  • latent_scaling_factor is the scaling factor for the latent space. The encodings of the autoencoder are scaled by this before feeding into the U-Net.
  • n_steps is the number of diffusion steps .
  • linear_start is the start of the schedule.
  • linear_end is the end of the schedule.
64    def __init__(self,
65                 unet_model: UNetModel,
66                 autoencoder: Autoencoder,
67                 clip_embedder: CLIPTextEmbedder,
68                 latent_scaling_factor: float,
69                 n_steps: int,
70                 linear_start: float,
71                 linear_end: float,
72                 ):
84        super().__init__()

Wrap the U-Net to keep the same model structure as CompVis/stable-diffusion.

87        self.model = DiffusionWrapper(unet_model)

Auto-encoder and scaling factor

89        self.first_stage_model = autoencoder
90        self.latent_scaling_factor = latent_scaling_factor
92        self.cond_stage_model = clip_embedder

Number of steps

95        self.n_steps = n_steps


98        beta = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_steps, dtype=torch.float64) ** 2
99        self.beta = nn.Parameter(, requires_grad=False)

101        alpha = 1. - beta

103        alpha_bar = torch.cumprod(alpha, dim=0)
104        self.alpha_bar = nn.Parameter(, requires_grad=False)

Get model device

106    @property
107    def device(self):
111        return next(iter(self.model.parameters())).device

Get CLIP embeddings for a list of text prompts

113    def get_text_conditioning(self, prompts: List[str]):
117        return self.cond_stage_model(prompts)

Get scaled latent space representation of the image

The encoder output is a distribution. We sample from that and multiply by the scaling factor.

119    def autoencoder_encode(self, image: torch.Tensor):
126        return self.latent_scaling_factor * self.first_stage_model.encode(image).sample()

Get image from the latent representation

We scale down by the scaling factor and then decode.

128    def autoencoder_decode(self, z: torch.Tensor):
134        return self.first_stage_model.decode(z / self.latent_scaling_factor)

Predict noise

Predict noise given the latent representation , time step , and the conditioning context .

136    def forward(self, x: torch.Tensor, t: torch.Tensor, context: torch.Tensor):
145        return self.model(x, t, context)