U-Net for Stable Diffusion

This implements the U-Net that gives

We have kept to the model definition and naming unchanged from CompVis/stable-diffusion so that we can load the checkpoints directly.

18import math
19from typing import List
20
21import numpy as np
22import torch
23import torch.nn as nn
24import torch.nn.functional as F
25
26from labml_nn.diffusion.stable_diffusion.model.unet_attention import SpatialTransformer

U-Net model

29class UNetModel(nn.Module):
  • in_channels is the number of channels in the input feature map
  • out_channels is the number of channels in the output feature map
  • channels is the base channel count for the model
  • n_res_blocks number of residual blocks at each level
  • attention_levels are the levels at which attention should be performed
  • channel_multipliers are the multiplicative factors for number of channels for each level
  • n_heads the number of attention heads in the transformers
34    def __init__(
35            self, *,
36            in_channels: int,
37            out_channels: int,
38            channels: int,
39            n_res_blocks: int,
40            attention_levels: List[int],
41            channel_multipliers: List[int],
42            n_heads: int,
43            tf_layers: int = 1,
44            d_cond: int = 768):
54        super().__init__()
55        self.channels = channels

Number of levels

58        levels = len(channel_multipliers)

Size time embeddings

60        d_time_emb = channels * 4
61        self.time_embed = nn.Sequential(
62            nn.Linear(channels, d_time_emb),
63            nn.SiLU(),
64            nn.Linear(d_time_emb, d_time_emb),
65        )

Input half of the U-Net

68        self.input_blocks = nn.ModuleList()

Initial convolution that maps the input to channels . The blocks are wrapped in TimestepEmbedSequential module because different modules have different forward function signatures; for example, convolution only accepts the feature map and residual blocks accept the feature map and time embedding. TimestepEmbedSequential calls them accordingly.

75        self.input_blocks.append(TimestepEmbedSequential(
76            nn.Conv2d(in_channels, channels, 3, padding=1)))

Number of channels at each block in the input half of U-Net

78        input_block_channels = [channels]

Number of channels at each level

80        channels_list = [channels * m for m in channel_multipliers]

Prepare levels

82        for i in range(levels):

Add the residual blocks and attentions

84            for _ in range(n_res_blocks):

Residual block maps from previous number of channels to the number of channels in the current level

87                layers = [ResBlock(channels, d_time_emb, out_channels=channels_list[i])]
88                channels = channels_list[i]

Add transformer

90                if i in attention_levels:
91                    layers.append(SpatialTransformer(channels, n_heads, tf_layers, d_cond))

Add them to the input half of the U-Net and keep track of the number of channels of its output

94                self.input_blocks.append(TimestepEmbedSequential(*layers))
95                input_block_channels.append(channels)

Down sample at all levels except last

97            if i != levels - 1:
98                self.input_blocks.append(TimestepEmbedSequential(DownSample(channels)))
99                input_block_channels.append(channels)

The middle of the U-Net

102        self.middle_block = TimestepEmbedSequential(
103            ResBlock(channels, d_time_emb),
104            SpatialTransformer(channels, n_heads, tf_layers, d_cond),
105            ResBlock(channels, d_time_emb),
106        )

Second half of the U-Net

109        self.output_blocks = nn.ModuleList([])

Prepare levels in reverse order

111        for i in reversed(range(levels)):

Add the residual blocks and attentions

113            for j in range(n_res_blocks + 1):

Residual block maps from previous number of channels plus the skip connections from the input half of U-Net to the number of channels in the current level.

117                layers = [ResBlock(channels + input_block_channels.pop(), d_time_emb, out_channels=channels_list[i])]
118                channels = channels_list[i]

Add transformer

120                if i in attention_levels:
121                    layers.append(SpatialTransformer(channels, n_heads, tf_layers, d_cond))

Up-sample at every level after last residual block except the last one. Note that we are iterating in reverse; i.e. i == 0 is the last.

125                if i != 0 and j == n_res_blocks:
126                    layers.append(UpSample(channels))

Add to the output half of the U-Net

128                self.output_blocks.append(TimestepEmbedSequential(*layers))

Final normalization and convolution

131        self.out = nn.Sequential(
132            normalization(channels),
133            nn.SiLU(),
134            nn.Conv2d(channels, out_channels, 3, padding=1),
135        )

Create sinusoidal time step embeddings

  • time_steps are the time steps of shape [batch_size]
  • max_period controls the minimum frequency of the embeddings.
137    def time_step_embedding(self, time_steps: torch.Tensor, max_period: int = 10000):

; half the channels are sin and the other half is cos,

145        half = self.channels // 2

147        frequencies = torch.exp(
148            -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
149        ).to(device=time_steps.device)

151        args = time_steps[:, None].float() * frequencies[None]

and

153        return torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
  • x is the input feature map of shape [batch_size, channels, width, height]
  • time_steps are the time steps of shape [batch_size]
  • cond conditioning of shape [batch_size, n_cond, d_cond]
155    def forward(self, x: torch.Tensor, time_steps: torch.Tensor, cond: torch.Tensor):

To store the input half outputs for skip connections

162        x_input_block = []

Get time step embeddings

165        t_emb = self.time_step_embedding(time_steps)
166        t_emb = self.time_embed(t_emb)

Input half of the U-Net

169        for module in self.input_blocks:
170            x = module(x, t_emb, cond)
171            x_input_block.append(x)

Middle of the U-Net

173        x = self.middle_block(x, t_emb, cond)

Output half of the U-Net

175        for module in self.output_blocks:
176            x = torch.cat([x, x_input_block.pop()], dim=1)
177            x = module(x, t_emb, cond)

Final normalization and convolution

180        return self.out(x)

Sequential block for modules with different inputs

This sequential module can compose of different modules suck as ResBlock , nn.Conv and SpatialTransformer and calls them with the matching signatures

183class TimestepEmbedSequential(nn.Sequential):
191    def forward(self, x, t_emb, cond=None):
192        for layer in self:
193            if isinstance(layer, ResBlock):
194                x = layer(x, t_emb)
195            elif isinstance(layer, SpatialTransformer):
196                x = layer(x, cond)
197            else:
198                x = layer(x)
199        return x

Up-sampling layer

202class UpSample(nn.Module):
  • channels is the number of channels
207    def __init__(self, channels: int):
211        super().__init__()

convolution mapping

213        self.conv = nn.Conv2d(channels, channels, 3, padding=1)
  • x is the input feature map with shape [batch_size, channels, height, width]
215    def forward(self, x: torch.Tensor):

Up-sample by a factor of

220        x = F.interpolate(x, scale_factor=2, mode="nearest")

Apply convolution

222        return self.conv(x)

Down-sampling layer

225class DownSample(nn.Module):
  • channels is the number of channels
230    def __init__(self, channels: int):
234        super().__init__()

convolution with stride length of to down-sample by a factor of

236        self.op = nn.Conv2d(channels, channels, 3, stride=2, padding=1)
  • x is the input feature map with shape [batch_size, channels, height, width]
238    def forward(self, x: torch.Tensor):

Apply convolution

243        return self.op(x)

ResNet Block

246class ResBlock(nn.Module):
  • channels the number of input channels
  • d_t_emb the size of timestep embeddings
  • out_channels is the number of out channels. defaults to `channels.
251    def __init__(self, channels: int, d_t_emb: int, *, out_channels=None):
257        super().__init__()

out_channels not specified

259        if out_channels is None:
260            out_channels = channels

First normalization and convolution

263        self.in_layers = nn.Sequential(
264            normalization(channels),
265            nn.SiLU(),
266            nn.Conv2d(channels, out_channels, 3, padding=1),
267        )

Time step embeddings

270        self.emb_layers = nn.Sequential(
271            nn.SiLU(),
272            nn.Linear(d_t_emb, out_channels),
273        )

Final convolution layer

275        self.out_layers = nn.Sequential(
276            normalization(out_channels),
277            nn.SiLU(),
278            nn.Dropout(0.),
279            nn.Conv2d(out_channels, out_channels, 3, padding=1)
280        )

channels to out_channels mapping layer for residual connection

283        if out_channels == channels:
284            self.skip_connection = nn.Identity()
285        else:
286            self.skip_connection = nn.Conv2d(channels, out_channels, 1)
  • x is the input feature map with shape [batch_size, channels, height, width]
  • t_emb is the time step embeddings of shape [batch_size, d_t_emb]
288    def forward(self, x: torch.Tensor, t_emb: torch.Tensor):

Initial convolution

294        h = self.in_layers(x)

Time step embeddings

296        t_emb = self.emb_layers(t_emb).type(h.dtype)

Add time step embeddings

298        h = h + t_emb[:, :, None, None]

Final convolution

300        h = self.out_layers(h)

Add skip connection

302        return self.skip_connection(x) + h

Group normalization with float32 casting

305class GroupNorm32(nn.GroupNorm):
310    def forward(self, x):
311        return super().forward(x.float()).type(x.dtype)

Group normalization

This is a helper function, with fixed number of groups..

314def normalization(channels):
320    return GroupNorm32(32, channels)

Test sinusoidal time step embeddings

323def _test_time_embeddings():
327    import matplotlib.pyplot as plt
328
329    plt.figure(figsize=(15, 5))
330    m = UNetModel(in_channels=1, out_channels=1, channels=320, n_res_blocks=1, attention_levels=[],
331                  channel_multipliers=[],
332                  n_heads=1, tf_layers=1, d_cond=1)
333    te = m.time_step_embedding(torch.arange(0, 1000))
334    plt.plot(np.arange(1000), te[:, [50, 100, 190, 260]].numpy())
335    plt.legend(["dim %d" % p for p in [50, 100, 190, 260]])
336    plt.title("Time embeddings")
337    plt.show()

341if __name__ == '__main__':
342    _test_time_embeddings()