This implements the U-Net that gives
We have kept to the model definition and naming unchanged from CompVis/stable-diffusion so that we can load the checkpoints directly.
18import math
19from typing import List
20
21import numpy as np
22import torch
23import torch.nn as nn
24import torch.nn.functional as F
25
26from labml_nn.diffusion.stable_diffusion.model.unet_attention import SpatialTransformer
29class UNetModel(nn.Module):
in_channels
is the number of channels in the input feature map out_channels
is the number of channels in the output feature map channels
is the base channel count for the model n_res_blocks
number of residual blocks at each level attention_levels
are the levels at which attention should be performed channel_multipliers
are the multiplicative factors for number of channels for each level n_heads
is the number of attention heads in the transformers tf_layers
is the number of transformer layers in the transformers d_cond
is the size of the conditional embedding in the transformers34 def __init__(
35 self, *,
36 in_channels: int,
37 out_channels: int,
38 channels: int,
39 n_res_blocks: int,
40 attention_levels: List[int],
41 channel_multipliers: List[int],
42 n_heads: int,
43 tf_layers: int = 1,
44 d_cond: int = 768):
56 super().__init__()
57 self.channels = channels
Number of levels
60 levels = len(channel_multipliers)
Size time embeddings
62 d_time_emb = channels * 4
63 self.time_embed = nn.Sequential(
64 nn.Linear(channels, d_time_emb),
65 nn.SiLU(),
66 nn.Linear(d_time_emb, d_time_emb),
67 )
Input half of the U-Net
70 self.input_blocks = nn.ModuleList()
Initial convolution that maps the input to channels
. The blocks are wrapped in TimestepEmbedSequential
module because different modules have different forward function signatures; for example, convolution only accepts the feature map and residual blocks accept the feature map and time embedding. TimestepEmbedSequential
calls them accordingly.
77 self.input_blocks.append(TimestepEmbedSequential(
78 nn.Conv2d(in_channels, channels, 3, padding=1)))
Number of channels at each block in the input half of U-Net
80 input_block_channels = [channels]
Number of channels at each level
82 channels_list = [channels * m for m in channel_multipliers]
Prepare levels
84 for i in range(levels):
Add the residual blocks and attentions
86 for _ in range(n_res_blocks):
Residual block maps from previous number of channels to the number of channels in the current level
89 layers = [ResBlock(channels, d_time_emb, out_channels=channels_list[i])]
90 channels = channels_list[i]
Add transformer
92 if i in attention_levels:
93 layers.append(SpatialTransformer(channels, n_heads, tf_layers, d_cond))
Add them to the input half of the U-Net and keep track of the number of channels of its output
96 self.input_blocks.append(TimestepEmbedSequential(*layers))
97 input_block_channels.append(channels)
Down sample at all levels except last
99 if i != levels - 1:
100 self.input_blocks.append(TimestepEmbedSequential(DownSample(channels)))
101 input_block_channels.append(channels)
The middle of the U-Net
104 self.middle_block = TimestepEmbedSequential(
105 ResBlock(channels, d_time_emb),
106 SpatialTransformer(channels, n_heads, tf_layers, d_cond),
107 ResBlock(channels, d_time_emb),
108 )
Second half of the U-Net
111 self.output_blocks = nn.ModuleList([])
Prepare levels in reverse order
113 for i in reversed(range(levels)):
Add the residual blocks and attentions
115 for j in range(n_res_blocks + 1):
Residual block maps from previous number of channels plus the skip connections from the input half of U-Net to the number of channels in the current level.
119 layers = [ResBlock(channels + input_block_channels.pop(), d_time_emb, out_channels=channels_list[i])]
120 channels = channels_list[i]
Add transformer
122 if i in attention_levels:
123 layers.append(SpatialTransformer(channels, n_heads, tf_layers, d_cond))
Up-sample at every level after last residual block except the last one. Note that we are iterating in reverse; i.e. i == 0
is the last.
127 if i != 0 and j == n_res_blocks:
128 layers.append(UpSample(channels))
Add to the output half of the U-Net
130 self.output_blocks.append(TimestepEmbedSequential(*layers))
Final normalization and convolution
133 self.out = nn.Sequential(
134 normalization(channels),
135 nn.SiLU(),
136 nn.Conv2d(channels, out_channels, 3, padding=1),
137 )
time_steps
are the time steps of shape [batch_size]
max_period
controls the minimum frequency of the embeddings.139 def time_step_embedding(self, time_steps: torch.Tensor, max_period: int = 10000):
; half the channels are sin and the other half is cos,
147 half = self.channels // 2
149 frequencies = torch.exp(
150 -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
151 ).to(device=time_steps.device)
153 args = time_steps[:, None].float() * frequencies[None]
and
155 return torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
x
is the input feature map of shape [batch_size, channels, width, height]
time_steps
are the time steps of shape [batch_size]
cond
conditioning of shape [batch_size, n_cond, d_cond]
157 def forward(self, x: torch.Tensor, time_steps: torch.Tensor, cond: torch.Tensor):
To store the input half outputs for skip connections
164 x_input_block = []
Get time step embeddings
167 t_emb = self.time_step_embedding(time_steps)
168 t_emb = self.time_embed(t_emb)
Input half of the U-Net
171 for module in self.input_blocks:
172 x = module(x, t_emb, cond)
173 x_input_block.append(x)
Middle of the U-Net
175 x = self.middle_block(x, t_emb, cond)
Output half of the U-Net
177 for module in self.output_blocks:
178 x = torch.cat([x, x_input_block.pop()], dim=1)
179 x = module(x, t_emb, cond)
Final normalization and convolution
182 return self.out(x)
This sequential module can compose of different modules such as ResBlock
, nn.Conv
and SpatialTransformer
and calls them with the matching signatures
185class TimestepEmbedSequential(nn.Sequential):
193 def forward(self, x, t_emb, cond=None):
194 for layer in self:
195 if isinstance(layer, ResBlock):
196 x = layer(x, t_emb)
197 elif isinstance(layer, SpatialTransformer):
198 x = layer(x, cond)
199 else:
200 x = layer(x)
201 return x
204class UpSample(nn.Module):
channels
is the number of channels209 def __init__(self, channels: int):
213 super().__init__()
convolution mapping
215 self.conv = nn.Conv2d(channels, channels, 3, padding=1)
x
is the input feature map with shape [batch_size, channels, height, width]
217 def forward(self, x: torch.Tensor):
Up-sample by a factor of
222 x = F.interpolate(x, scale_factor=2, mode="nearest")
Apply convolution
224 return self.conv(x)
227class DownSample(nn.Module):
channels
is the number of channels232 def __init__(self, channels: int):
236 super().__init__()
convolution with stride length of to down-sample by a factor of
238 self.op = nn.Conv2d(channels, channels, 3, stride=2, padding=1)
x
is the input feature map with shape [batch_size, channels, height, width]
240 def forward(self, x: torch.Tensor):
Apply convolution
245 return self.op(x)
248class ResBlock(nn.Module):
channels
the number of input channels d_t_emb
the size of timestep embeddings out_channels
is the number of out channels. defaults to `channels.253 def __init__(self, channels: int, d_t_emb: int, *, out_channels=None):
259 super().__init__()
out_channels
not specified
261 if out_channels is None:
262 out_channels = channels
First normalization and convolution
265 self.in_layers = nn.Sequential(
266 normalization(channels),
267 nn.SiLU(),
268 nn.Conv2d(channels, out_channels, 3, padding=1),
269 )
Time step embeddings
272 self.emb_layers = nn.Sequential(
273 nn.SiLU(),
274 nn.Linear(d_t_emb, out_channels),
275 )
Final convolution layer
277 self.out_layers = nn.Sequential(
278 normalization(out_channels),
279 nn.SiLU(),
280 nn.Dropout(0.),
281 nn.Conv2d(out_channels, out_channels, 3, padding=1)
282 )
channels
to out_channels
mapping layer for residual connection
285 if out_channels == channels:
286 self.skip_connection = nn.Identity()
287 else:
288 self.skip_connection = nn.Conv2d(channels, out_channels, 1)
x
is the input feature map with shape [batch_size, channels, height, width]
t_emb
is the time step embeddings of shape [batch_size, d_t_emb]
290 def forward(self, x: torch.Tensor, t_emb: torch.Tensor):
Initial convolution
296 h = self.in_layers(x)
Time step embeddings
298 t_emb = self.emb_layers(t_emb).type(h.dtype)
Add time step embeddings
300 h = h + t_emb[:, :, None, None]
Final convolution
302 h = self.out_layers(h)
Add skip connection
304 return self.skip_connection(x) + h
307class GroupNorm32(nn.GroupNorm):
312 def forward(self, x):
313 return super().forward(x.float()).type(x.dtype)
316def normalization(channels):
322 return GroupNorm32(32, channels)
Test sinusoidal time step embeddings
325def _test_time_embeddings():
329 import matplotlib.pyplot as plt
330
331 plt.figure(figsize=(15, 5))
332 m = UNetModel(in_channels=1, out_channels=1, channels=320, n_res_blocks=1, attention_levels=[],
333 channel_multipliers=[],
334 n_heads=1, tf_layers=1, d_cond=1)
335 te = m.time_step_embedding(torch.arange(0, 1000))
336 plt.plot(np.arange(1000), te[:, [50, 100, 190, 260]].numpy())
337 plt.legend(["dim %d" % p for p in [50, 100, 190, 260]])
338 plt.title("Time embeddings")
339 plt.show()
343if __name__ == '__main__':
344 _test_time_embeddings()