14import torch
15from torch import nn
16from torch.utils.data import DataLoader, RandomSampler
17
18from labml import monit, lab, tracker, experiment, logger
19from labml.logger import Text
20from labml_helpers.datasets.text import TextFileDataset
21from labml_nn.optimizers.noam import Noam
22from labml_nn.transformers.retro import model as retro
23from labml_nn.transformers.retro.dataset import Dataset, RetroIndex
24from labml_nn.transformers.retro.model import RetroModel, NearestNeighborEncoder
27class Sampler:
34 def __init__(self, device: torch.device, model: retro.RetroModel, tds: TextFileDataset, chunk_len: int):
41 self.chunk_len = chunk_len
42 self.tds = tds
43 self.model = model
44 self.device = device
49 def retrieve_nearest_neighbours(self, chunk: str):
检索最近邻点的偏移量
55 neighbor_offsets = self.index([chunk], None)
获取邻居(邻居长度等于chunk_len * 2
)
58 text = self.tds.train
59 neighbors = [text[j: j + self.chunk_len * 2] for j in neighbor_offsets[0]]
62 return neighbors
64 def sample(self, prompt: str, sample_len: int):
将最近邻存储为字符串
70 neighbors_str = []
样本文本
73 sampled = ''
sample_len
代币样本
76 for i in range(sample_len):
如果采样块比我们已经检索到的要多,我们就需要检索邻居
79 while len(neighbors_str) < len(prompt) // self.chunk_len:
获取我们尚未检索到邻居的最后一个区块
81 off = len(neighbors_str) * self.chunk_len
82 chunk = prompt[off: off + self.chunk_len]
检索最近的邻居
84 neighbors_str.append(self.retrieve_nearest_neighbours(chunk))
对输入进行标记化
87 src = self.tds.text_to_i(prompt)
标记检索到的邻居
89 neighbors = torch.stack([torch.stack([self.tds.text_to_i(n) for n in chunk]) for chunk in neighbors_str])
将它们移到与模型相同的设备上
92 src = src.to(self.device)
93 neighbors = neighbors.to(self.device)
获取模型输出
96 res = self.model(src[None, :], neighbors[None, :, :, :])
贪婪地抽取最后一个代币
99 token = res[0, -1, :].argmax(dim=-1)
将采样标记文本添加到提示和示例文本中
102 prompt += self.tds.itos[token.item()]
103 sampled += self.tds.itos[token.item()]
106 return sampled
109class Trainer:
device
是该型号的设备model
是复古模式dataloader
是具有预检索邻域的数据集的数据加载器optimizer
是优化器114 def __init__(self, device: torch.device, model: retro.RetroModel,
115 dataloader: DataLoader, optimizer: torch.optim.Optimizer):
122 self.optimizer = optimizer
123 self.device = device
124 self.dataloader = dataloader
125 self.model = model
126 self.loss_func = nn.CrossEntropyLoss()
128 def __call__(self):
遍历训练数据
134 for i, (src, tgt, neighbors) in monit.enum('Train', self.dataloader):
将数据移动到设备
136 src, tgt, neighbors = src.to(self.device), tgt.to(self.device), neighbors.to(self.device)
向前传球
139 res = self.model(src, neighbors)
计算损失
141 loss = self.loss_func(res.view(-1, res.shape[-1]), tgt.view(-1))
清除渐变
144 self.optimizer.zero_grad()
向后传球
146 loss.backward()
优化模型
148 self.optimizer.step()
保存训练统计数据并增加全局步数计数器
151 tracker.save({'loss.train': loss})
152 tracker.add_global_step(len(src))
155def train():
创建实验
161 experiment.create(name='retro_small')
GPU 设备
164 device = torch.device('cuda:0')
加载小莎士比亚数据集
167 tds = TextFileDataset(
168 lab.get_data_path() / 'tiny_shakespeare.txt',
169 list,
170 url='https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt')
创建数据加载器
176 train_dl = DataLoader(train_dataset,
177 batch_size=4,
178 sampler=RandomSampler(train_dataset, replacement=True))
超参数
181 chunk_len = 16
182 d_model = 128
183 d_ff = 512
184 n_heads = 16
185 d_k = 16
创建最近邻编码器
188 nearest_neighbor_encoder = NearestNeighborEncoder(chunk_len, 6, {3}, d_model, n_heads, d_k, d_ff)
创建模型
190 model = RetroModel(tds.n_tokens, d_model, 6,
191 {3, 5},
192 chunk_len, n_heads, d_k, d_ff,
193 encoder=nearest_neighbor_encoder)
将模型移到设备上
195 model = model.to(device)
创建优化器
197 optimizer = Noam(model.parameters(), lr=1., d_model=d_model, warmup=2_000)
创建Trainer
199 trainer = Trainer(device, model, train_dl, optimizer)
创建Sampler
201 sampler = Sampler(device, model, tds, chunk_len)
203 prompt = '''Second Citizen:\nOne word, good citizens.\n\nFirst Citizen:'''
设置用于保存和加载的模型
206 experiment.add_pytorch_models(model=model)
开始实验
209 with experiment.start():
为32
时代而训练
211 for epoch in monit.loop(32):
火车
213 trainer()
打印一条新行
215 tracker.new_line()
样本来自prompt
217 logger.log([(prompt.replace('\n', '\\n\n'), Text.subtle),
218 (sampler.sample(prompt, 128).replace('\n', '\\n\n'), Text.none)])
保存模型
220 experiment.save_checkpoint()
224if __name__ == '__main__':
225 train()