14import torch
15from torch import nn
16from torch.utils.data import DataLoader, RandomSampler
17
18from labml import monit, lab, tracker, experiment, logger
19from labml.logger import Text
20from labml_helpers.datasets.text import TextFileDataset
21from labml_nn.optimizers.noam import Noam
22from labml_nn.transformers.retro import model as retro
23from labml_nn.transformers.retro.dataset import Dataset, RetroIndex
24from labml_nn.transformers.retro.model import RetroModel, NearestNeighborEncoder27class Sampler:34    def __init__(self, device: torch.device, model: retro.RetroModel, tds: TextFileDataset, chunk_len: int):41        self.chunk_len = chunk_len
42        self.tds = tds
43        self.model = model
44        self.device = device49    def retrieve_nearest_neighbours(self, chunk: str):检索最近邻点的偏移量
55        neighbor_offsets = self.index([chunk], None)获取邻居(邻居长度等于chunk_len * 2
)
58        text = self.tds.train
59        neighbors = [text[j: j + self.chunk_len * 2] for j in neighbor_offsets[0]]62        return neighbors64    def sample(self, prompt: str, sample_len: int):将最近邻存储为字符串
70        neighbors_str = []样本文本
73        sampled = ''sample_len
代币样本
76        for i in range(sample_len):如果采样块比我们已经检索到的要多,我们就需要检索邻居
79            while len(neighbors_str) < len(prompt) // self.chunk_len:获取我们尚未检索到邻居的最后一个区块
81                off = len(neighbors_str) * self.chunk_len
82                chunk = prompt[off: off + self.chunk_len]检索最近的邻居
84                neighbors_str.append(self.retrieve_nearest_neighbours(chunk))对输入进行标记化
87            src = self.tds.text_to_i(prompt)标记检索到的邻居
89            neighbors = torch.stack([torch.stack([self.tds.text_to_i(n) for n in chunk]) for chunk in neighbors_str])将它们移到与模型相同的设备上
92            src = src.to(self.device)
93            neighbors = neighbors.to(self.device)获取模型输出
96            res = self.model(src[None, :], neighbors[None, :, :, :])贪婪地抽取最后一个代币
99            token = res[0, -1, :].argmax(dim=-1)将采样标记文本添加到提示和示例文本中
102            prompt += self.tds.itos[token.item()]
103            sampled += self.tds.itos[token.item()]106        return sampled109class Trainer:device
是该型号的设备model
是复古模式dataloader
是具有预检索邻域的数据集的数据加载器optimizer
是优化器114    def __init__(self, device: torch.device, model: retro.RetroModel,
115                 dataloader: DataLoader, optimizer: torch.optim.Optimizer):122        self.optimizer = optimizer
123        self.device = device
124        self.dataloader = dataloader
125        self.model = model
126        self.loss_func = nn.CrossEntropyLoss()128    def __call__(self):遍历训练数据
134        for i, (src, tgt, neighbors) in monit.enum('Train', self.dataloader):将数据移动到设备
136            src, tgt, neighbors = src.to(self.device), tgt.to(self.device), neighbors.to(self.device)向前传球
139            res = self.model(src, neighbors)计算损失
141            loss = self.loss_func(res.view(-1, res.shape[-1]), tgt.view(-1))清除渐变
144            self.optimizer.zero_grad()向后传球
146            loss.backward()优化模型
148            self.optimizer.step()保存训练统计数据并增加全局步数计数器
151            tracker.save({'loss.train': loss})
152            tracker.add_global_step(len(src))155def train():创建实验
161    experiment.create(name='retro_small')GPU 设备
164    device = torch.device('cuda:0')加载小莎士比亚数据集
167    tds = TextFileDataset(
168        lab.get_data_path() / 'tiny_shakespeare.txt',
169        list,
170        url='https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt')创建数据加载器
176    train_dl = DataLoader(train_dataset,
177                          batch_size=4,
178                          sampler=RandomSampler(train_dataset, replacement=True))超参数
181    chunk_len = 16
182    d_model = 128
183    d_ff = 512
184    n_heads = 16
185    d_k = 16创建最近邻编码器
188    nearest_neighbor_encoder = NearestNeighborEncoder(chunk_len, 6, {3}, d_model, n_heads, d_k, d_ff)创建模型
190    model = RetroModel(tds.n_tokens, d_model, 6,
191                       {3, 5},
192                       chunk_len, n_heads, d_k, d_ff,
193                       encoder=nearest_neighbor_encoder)将模型移到设备上
195    model = model.to(device)创建优化器
197    optimizer = Noam(model.parameters(), lr=1., d_model=d_model, warmup=2_000)创建Trainer
199    trainer = Trainer(device, model, train_dl, optimizer)创建Sampler
201    sampler = Sampler(device, model, tds, chunk_len)203    prompt = '''Second Citizen:\nOne word, good citizens.\n\nFirst Citizen:'''设置用于保存和加载的模型
206    experiment.add_pytorch_models(model=model)开始实验
209    with experiment.start():为32
时代而训练
211        for epoch in monit.loop(32):火车
213            trainer()打印一条新行
215            tracker.new_line()样本来自prompt
217            logger.log([(prompt.replace('\n', '\\n\n'), Text.subtle),
218                        (sampler.sample(prompt, 128).replace('\n', '\\n\n'), Text.none)])保存模型
220            experiment.save_checkpoint()224if __name__ == '__main__':
225    train()