11from typing import Optional, List
12
13import faiss
14import numpy as np
15import torch
16
17from labml import monit, lab
18from labml.logger import inspect
19from labml_nn.transformers.knn.train_model import Configs
22def knn(queries: torch.Tensor, index: faiss.IndexFlatL2, keys_store: np.ndarray, vals_store: np.ndarray, n_tokens: int):
Save shape of queries to reshape results
31 queries_shape = queries.shape
Flatten the batch
and sequence
dimensions of queries
34 queries = queries.view(-1, queries_shape[-1])
Find 10 nearest neighbors of among . distance
is the distance given by FAISS and idx
, is the index of it in keys_store
.
38 distance, idx = index.search(queries.numpy(), 10)
Get
41 keys_found = queries.new_tensor(keys_store[idx])
Get
43 vals_found = torch.tensor(vals_store[idx]).squeeze(-1)
We are going to calculate the cosine similarity between normalized vectors
Normalize
48 keys_found_n = keys_found / torch.sqrt((keys_found ** 2).sum(-1, keepdims=True) + 1e-10)
Normalize
50 queries_n = queries / torch.sqrt((queries ** 2).sum(-1, keepdims=True) + 1e-10)
Get the dot-product, or cosine similarity
53 dot_prod = (keys_found_n * queries_n.unsqueeze(1)).sum(-1)
Token-wise logits
56 logits_token = dot_prod.new_zeros(queries.shape[0], n_tokens)
Scatter and accumulate token logits based on the nearest neighbors
58 _ = logits_token.scatter_(dim=1, index=vals_found, src=dot_prod, reduce='add')
Reshape the logits
61 logits_token = logits_token.reshape(queries_shape[0], queries_shape[1], -1)
62
63 return logits_token
We calculate the validation loss of the combined on -NN prediction and transformer prediction. The weight given to the -NN model is given by knn_weight
. It's a list of weights and we calculate the validation loss for each.
66def validation_loss(knn_weights: List[float], last_n: Optional[int], conf: Configs, index: faiss.IndexFlatL2,
67 keys_store: np.ndarray, vals_store: np.ndarray):
List of losses for each knn_weights
77 losses = [[] for _ in knn_weights]
Number of samples in each batch
79 n_samples = []
80 with torch.no_grad():
Iterate through validation data
82 for i, batch in monit.enum("Validation", conf.validator.data_loader, is_children_silent=True):
Get data and target labels
84 data, target = batch[0].to(conf.device), batch[1].to(conf.device)
Run the model and get predictions
86 res = conf.model(data)
Get -NN predictions
88 res_knn = knn(conf.model.ff_input.cpu(), index, keys_store, vals_store, conf.n_tokens)
89 res_knn = res_knn.to(conf.device)
This is to calculate only the loss for last_n
tokens. This is important because the first predictions (along the sequence) of transformer model has very few past tokens to look at.
94 if last_n:
95 res = res[-last_n:]
96 res_knn = res_knn[-last_n:]
97 target = target[-last_n:]
Number of samples
100 n_s = res.shape[0] * data.shape[1]
101 n_samples.append(n_s)
Calculate scores for each of knn_weights
.
104 for i, c in enumerate(knn_weights):
Calculate the loss
106 loss = conf.loss_func(res_knn * c + (1 - c) * res, target)
107 losses[i].append(loss * n_s)
108
109 return losses, n_samples
112def load_index(conf: Configs, n_probe: int = 8):
Dimensions of
117 d_model = conf.transformer.d_model
Training data loader
119 data_loader = conf.trainer.data_loader
Number of contexts; i.e. number of tokens in the training data minus one. for
122 n_keys = data_loader.data.shape[0] * data_loader.data.shape[1] - 1
Load FAISS index
125 with monit.section('Load index'):
126 index = faiss.read_index(str(lab.get_data_path() / 'faiss.index'))
Set number of cells to probe
128 index.nprobe = n_probe
Load memory mapped numpy arrays
131 keys_store = np.memmap(str(lab.get_data_path() / 'keys.npy'), dtype=np.float32, mode='r', shape=(n_keys, d_model))
132 vals_store = np.memmap(str(lab.get_data_path() / 'vals.npy'), dtype=np.int, mode='r', shape=(n_keys, 1))
133
134 return index, keys_store, vals_store
137def main():
138 from labml_nn.transformers.knn.build_index import load_experiment
Load the experiment. Replace the run uuid with you run uuid from training the model.
141 conf = load_experiment('4984b85c20bf11eb877a69c1a03717cd')
Set model to evaluation mode
143 conf.model.eval()
Load index
146 index, keys_store, vals_store = load_index(conf)
List of weights given to -NN prediction. We will evaluate the validation loss for each of the weights
149 knn_weights = [i / 20 for i in range(10)]
Evaluate validation loss
151 losses, n_samples = validation_loss(knn_weights, None, conf, index, keys_store, vals_store)
Output the losses for each of knn_weights
.
153 inspect({c: np.sum(losses[i]) / np.sum(n_samples) for i, c in enumerate(knn_weights)})
154
155
156if __name__ == '__main__':
157 main()