12import torch
13from labml import experiment
14from labml.configs import option
15from labml.utils.pytorch import get_modules
16from labml_helpers.module import Module
17
18from labml_nn.experiments.nlp_autoregression import NLPAutoRegressionConfigs
19from labml_nn.transformers import Encoder, Generator, TransformerConfigs
20from labml_nn.transformers.utils import subsequent_mask
23class AutoregressiveModel(Module):
28 def __init__(self, src_embed: Module, encoder: Encoder, generator: Generator, *,
29 is_save_ff_input: bool = False):
30 super().__init__()
Token embedding module
32 self.src_embed = src_embed
Transformer based encoder
34 self.encoder = encoder
Whether the last layer of the encoder should save the input to the feed-forward layer. This is out , the embedding of the context.
38 self.encoder.layers[-1].is_save_ff_input = is_save_ff_input
Next token generation layer; this give logits of the the next token
41 self.generator = generator
This will be initialized on the first call
43 self.src_mask = None
Retrieve saved
45 @property
46 def ff_input(self) -> torch.Tensor:
50 return self.encoder.layers[-1].ff_input
52 def forward(self, src: torch.Tensor):
Create subsequent mask, so that the transformer can only pay attention to past tokens.
54 if self.src_mask is None or self.src_mask.size(0) != len(src):
55 self.src_mask = subsequent_mask(len(src)).to(src.device)
Embed the tokens (src
) and run it through the the transformer
57 res = self.encoder(self.src_embed(src), self.src_mask)
Generate logits of the next token
59 return self.generator(res), None
62class Configs(NLPAutoRegressionConfigs):
69 transformer: TransformerConfigs
70 model: AutoregressiveModel
71
72 is_save_ff_input = False
Initialize the auto-regressive model
75@option(Configs.model)
76def autoregressive_model(c: Configs):
80 m = AutoregressiveModel(
Get the source token embedding layer, encoder and final token generator from configurable transformer
83 src_embed=c.transformer.src_embed,
84 encoder=c.transformer.encoder,
85 generator=c.transformer.generator,
Whether to save
87 is_save_ff_input=c.is_save_ff_input)
88 return m.to(c.device)
Initialize the configurable transformer encoder for our autoregressive model
91@option(Configs.transformer)
92def transformer_c(c: Configs):
96 tc = TransformerConfigs()
97 tc.n_src_vocab = c.n_tokens
98 tc.n_tgt_vocab = c.n_tokens
99
100 return tc
103def main():
Create experiment
105 experiment.create(name="knn_lm")
Create configs
107 conf = Configs()
Load configurations
109 experiment.configs(conf,
A dictionary of configurations to override
111 {'tokenizer': 'character',
112 'prompt_separator': '',
113 'prompt': 'It is ',
114 'text': 'tiny_shakespeare',
115
116 'optimizer.optimizer': 'Noam',
117 'optimizer.learning_rate': 1.,
118 'optimizer.d_model': 256,
119
120 'seq_len': 1024,
121 'epochs': 128,
122 'batch_size': 6,
123 'inner_iterations': 10,
Transformer configurations
126 'transformer.d_model': 256,
127 'transformer.ffn.d_ff': 1024,
128 'transformer.n_heads': 8,
129 'transformer.n_layers': 6})
This is needed to initialize models
132 conf.n_tokens = conf.text.n_tokens
Set models for saving and loading
135 experiment.add_pytorch_models(get_modules(conf))
Start the experiment
138 with experiment.start():
TrainValidConfigs.run
140 conf.run()
141
142
143if __name__ == '__main__':
144 main()