This trains a simple transformer model for auto-regression. We try different variants for the position-wise feedforward network.
This is a simpler implementation that doesn't use labml.configs
module. We decided to write a simpler implementation to make it easier for readers who are not familiar.
19import dataclasses
20
21import torch
22from labml_helpers.module import Module
23from torch import nn
24from torch.utils.data import Dataset, DataLoader
25
26from labml import experiment, lab, tracker, monit, logger
27from labml.logger import Text
28from labml.utils.download import download_file
29from labml_nn.experiments.nlp_autoregression import transpose_batch
30from labml_nn.optimizers.noam import Noam
31from labml_nn.transformers import Encoder, MultiHeadAttention
32from labml_nn.transformers.feed_forward import FeedForward
33from labml_nn.transformers.models import EmbeddingsWithPositionalEncoding, TransformerLayer
34from labml_nn.transformers.utils import subsequent_mask
37class AutoregressiveModel(Module):
42 def __init__(self, src_embed: Module, encoder: Encoder, generator: Module):
43 super().__init__()
Token embedding module
45 self.src_embed = src_embed
Transformer based encoder
47 self.encoder = encoder
Next token generation layer; this gives logits of the the next token
50 self.generator = generator
This will be initialized on the first call
52 self.src_mask = None
54 def forward(self, src: torch.Tensor):
Create subsequent mask, so that the transformer can only pay attention to past tokens.
56 if self.src_mask is None or self.src_mask.size(0) != len(src):
57 self.src_mask = subsequent_mask(len(src)).to(src.device)
Embed the tokens (src
) and run it through the the transformer
59 res = self.encoder(self.src_embed(src), self.src_mask)
Generate logits of the next token
61 return self.generator(res)
64@dataclasses.dataclass
65class Configs:
69 d_model: int = 512
70 seq_len: int = 128
71 batch_size: int = 32
72 n_layers: int = 6
73 n_heads: int = 8
74 dropout: float = 0.1
75 d_ff: int = 2048
76 glu_variant: str = 'GLU'
77 epochs: int = 5
78 grad_norm_clip: float = 0.5
81class TinyShakespeareDataset(Dataset):
86 def __init__(self, seq_len: int):
Location of the text file
88 path = lab.get_data_path() / 'tiny_shakespeare.txt'
Download the file
90 download_file('https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt', path)
Read the downloaded file
92 with open(str(path), 'r') as f:
93 text = f.read()
Extract the characters
96 chars = list(set(text))
Character to id (integer) map
98 self.stoi = {c: i for i, c in enumerate(chars)}
Id to character map
100 self.itos = {i: c for i, c in enumerate(chars)}
Length of a training sample
102 self.seq_len = seq_len
Data in the form of a tensor of ids
104 self.data = self.text_to_i(text)
Transform the text into a tensor of ids
106 def text_to_i(self, text: str):
110 return torch.tensor([self.stoi[c] for c in text], dtype=torch.long)
112 def __len__(self):
118 return len(self.data) - self.seq_len - 1
Return a sample
120 def __getitem__(self, idx):
124 return self.data[idx:idx + self.seq_len], self.data[idx + 1:idx + self.seq_len + 1]
127class Trainer:
132 def __init__(self, configs: Configs):
Get the device
134 self.device = torch.device('cpu')
135 if torch.cuda.is_available():
136 self.device = torch.device('cuda:0')
Initialize the dataset
138 self.dataset = TinyShakespeareDataset(configs.seq_len)
Initialize the dataloader
140 self.dataloader = DataLoader(self.dataset,
141 batch_size=configs.batch_size,
142 collate_fn=transpose_batch,
143 shuffle=True)
FFN with Gated Linear Unit
147 if configs.glu_variant == 'GLU':
148 ffn = FeedForward(configs.d_model, configs.d_ff, configs.dropout, nn.Sigmoid(), True, False, False, False)
FFN with Bilinear hidden layer
151 elif configs.glu_variant == 'Bilinear':
152 ffn = FeedForward(configs.d_model, configs.d_ff, configs.dropout, nn.Identity(), True, False, False, False)
FFN with ReLU gate
155 elif configs.glu_variant == 'ReGLU':
156 ffn = FeedForward(configs.d_model, configs.d_ff, configs.dropout, nn.ReLU(), True, False, False, False)
FFN with GELU gate
159 elif configs.glu_variant == 'GEGLU':
160 ffn = FeedForward(configs.d_model, configs.d_ff, configs.dropout, nn.GELU(), True, False, False, False)
FFN with Swish gate where
164 elif configs.glu_variant == 'SwiGLU':
165 ffn = FeedForward(configs.d_model, configs.d_ff, configs.dropout, nn.SiLU(), True, False, False, False)
FFN with ReLU activation
168 elif configs.glu_variant == 'ReLU':
169 ffn = FeedForward(configs.d_model, configs.d_ff, configs.dropout, nn.ReLU())
FFN with ReLU activation
172 elif configs.glu_variant == 'GELU':
173 ffn = FeedForward(configs.d_model, configs.d_ff, configs.dropout, nn.GELU())
174 else:
175 raise ValueError(f'Unknown variant {configs.glu_variant}')
Number of different characters
178 n_chars = len(self.dataset.stoi)
Initialize Multi-Head Attention module
181 mha = MultiHeadAttention(configs.n_heads, configs.d_model, configs.dropout)
Initialize the Transformer Block
183 transformer_layer = TransformerLayer(d_model=configs.d_model, self_attn=mha, src_attn=None,
184 feed_forward=ffn, dropout_prob=configs.dropout)
Initialize the model with an embedding layer (with fixed positional encoding) transformer encoder and a linear layer to generate logits.
190 self.model = AutoregressiveModel(EmbeddingsWithPositionalEncoding(configs.d_model, n_chars),
191 Encoder(transformer_layer, configs.n_layers),
192 nn.Linear(configs.d_model, n_chars))
Move the model to the current device
195 self.model.to(self.device)
Initialize Noam optimizer
198 self.optimizer = Noam(self.model.parameters(), lr=1.0, warmup=2_000, d_model=configs.d_model)
Cross-entropy loss
201 self.loss_func = nn.CrossEntropyLoss()
Number of training epochs; note that our dataset definition repeats the data seq_len
times in a single epoch
204 self.epochs = configs.epochs
Gradient clipping norm
206 self.grad_norm_clip = configs.grad_norm_clip
Set tracker configurations
209 tracker.set_scalar("loss.*", True)
211 def sample(self):
Starting prompt
217 prompt = 'It is'
Collect output for printing
219 log = [(prompt, Text.subtle)]
Sample 25 tokens
221 for i in monit.iterate('Sample', 25):
Tokenize the prompt
223 data = self.dataset.text_to_i(prompt).unsqueeze(-1)
224 data = data.to(self.device)
Get the model output
226 output = self.model(data)
Get the model prediction (greedy)
228 output = output.argmax(dim=-1).squeeze()
Add the prediction to prompt
230 prompt += self.dataset.itos[output[-1].item()]
Add the prediction for logging
232 log += [(self.dataset.itos[output[-1].item()], Text.value)]
Print the sampled output
235 logger.log(log)
237 def train(self):
Loop for the given number of epochs
243 for _ in monit.loop(self.epochs):
Iterate over the minibatches
245 for i, batch in monit.enum('Train', self.dataloader):
Move data to the device
247 data, target = batch[0].to(self.device), batch[1].to(self.device)
Set tracker step, as the number of characters trained on
250 tracker.add_global_step(data.shape[0] * data.shape[1])
Set model state to training
253 self.model.train()
Evaluate the model
255 output = self.model(data)
Calculate loss
258 loss = self.loss_func(output.view(-1, output.shape[-1]), target.view(-1))
Log the loss
260 tracker.add("loss.train", loss)
Calculate gradients
263 loss.backward()
Clip gradients
265 torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=self.grad_norm_clip)
Take optimizer step
267 self.optimizer.step()
Log the model parameters and gradients
269 if (i + 1) % 100 == 0:
270 tracker.add('model', self.model)
Clear the gradients
272 self.optimizer.zero_grad()
Generate a sample
275 if (i + 1) % 100 == 0:
276 self.model.eval()
277 with torch.no_grad():
278 self.sample()
Save the tracked metrics
281 if (i + 1) % 10 == 0:
282 tracker.save()
Save the model
285 experiment.save_checkpoint()
288def main():
Create experiment
290 experiment.create(name="glu_variants")
Create configs
292 configs = Configs()
Load configurations
294 experiment.configs(dataclasses.asdict(configs))
Create trainer
297 trainer = Trainer(configs)
Set models for training and loading
299 experiment.add_pytorch_models({'model': trainer.model})
Start the experiment
302 with experiment.start():
Train the model
304 trainer.train()
305
306
307if __name__ == '__main__':
308 main()