This script trains the bias parameters of the GPT-NeoX model on multiple devices with Zero-DP Memory Optimization.
14import datetime
15
16import torch
17import torch.distributed
18
19from labml import experiment, monit, tracker
20from labml.configs import option
21from labml.logger import inspect
22from labml_nn.neox.samples.finetune import PipelineParallelTrainerConf
Use the Pipeline Parallel Trainer configurations and adapt it for Zero3 memory optimizer.
27class Configs(PipelineParallelTrainerConf):
28 rank: int
29 world_size: int
Note that we pass the sharded parameters from get_trainable_chunk
.
32@option(Configs.optimizer, 'Zero3Adam')
33def _optimizer(c: Configs):
39 from labml_nn.optimizers.adam_fp16 import AdamFP16
40 return AdamFP16(c.model.get_trainable_chunk(), lr=c.learning_rate)
43@option(Configs.model, 'Zero3')
44def _model(c: Configs):
48 from labml_nn.scaling.zero3 import Zero3Layer, Zero3Sequential
To make sure the fine tuner sets the trainable parameters
51 _ = c.fine_tuner
Wrap the layers with Zero3Layer
54 modules = []
55 for m in monit.iterate('Zero3', c.layers):
56 modules.append(Zero3Layer(m.to(c.device),
57 c.rank, c.world_size, c.device, c.dtype))
Create a sequential model
60 model = Zero3Sequential(modules)
63 return model
rank
.66def main(rank: int, world_size: int, init_method: str = 'tcp://localhost:23456'):
Initialize PyTorch distributed process group
71 with monit.section('Distributed'):
72 torch.distributed.init_process_group('nccl',
73 timeout=datetime.timedelta(seconds=30),
74 init_method=init_method,
75 rank=rank,
76 world_size=world_size)
Set current device
79 device = torch.device(f'cuda:{rank}')
80 torch.cuda.set_device(device)
Create the experiment
83 experiment.create(name='zero3_neox', writers={'screen', 'labml'},
84 distributed_world_size=world_size,
85 distributed_rank=rank)
Create configurations
88 conf = Configs()
Load configurations
91 experiment.configs(conf, {
92 'model': 'Zero3',
93 'optimizer': 'Zero3Adam',
94
95 'device': device,
96 'rank': rank,
97 'world_size': world_size,
98
99 'learning_rate': 3e-4,
100 'max_seq_len': 128,
101 'batch_size': 16,
102 })
Start the experiment
105 with experiment.start():
Initialize the model. Do this before the loop for cleaner logs.
107 _ = conf.model
Train the model
110 for epoch in monit.loop(conf.epochs):
111 conf.train_epoch()
112 tracker.new_line()
116if __name__ == '__main__':
Log the machine configurations
118 inspect([torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())])
119 inspect(
120 n_gpus=torch.cuda.device_count(),
121 mpi=torch.distributed.is_mpi_available(),
122 nccl=torch.distributed.is_nccl_available(),
123 )
124
125 n_gpu = torch.cuda.device_count()
Start a process for each GPU. You will need a separate launcher if you are using multiple computers.
128 torch.multiprocessing.spawn(main, args=(n_gpu,), nprocs=n_gpu, join=True)