13import fairscale
14import torch
15import torch.nn as nn
16import torch.utils.data
17import torch.utils.data
18import typing
19from torch.utils.data import DataLoader, RandomSampler
20
21from labml import experiment, monit, tracker, lab
22from labml.configs import option
23from labml.logger import inspect
24from labml_nn.neox.utils.text_dataset import get_training_data
25from labml_nn.neox.utils.finetune import FineTuneBiases
26from labml_nn.neox.model import LayerGenerator, NeoXModule
27from labml_nn.neox.utils import balance_layers_simple
28from labml_nn.neox.utils.trainer import PipelineParallelTrainerConf
31@option(PipelineParallelTrainerConf.layers, 'PipelineBiases')
32def neox_layers(c: PipelineParallelTrainerConf):
36 return list(LayerGenerator(is_clone_layers=c.is_clone_layers,
37 filter_layers=c.filter_layers,
38 dtype=c.dtype,
39 ).load())
42@option(PipelineParallelTrainerConf.fine_tuner, 'PipelineBiases')
43def fine_tune_biases(c: PipelineParallelTrainerConf):
48 fine_tuner = FineTuneBiases(typing.cast(typing.List[NeoXModule], c.layers))
Mark biases as trainable
50 fine_tuner.set_trainable_params()
53 return fine_tuner
56@option(PipelineParallelTrainerConf.model, 'PipelineBiases')
57def pipe_model(c: PipelineParallelTrainerConf):
62 if c.is_checkpointing:
63 raise NotImplementedError()
64 else:
65 layers = c.layers
Make sure the finetuner is initialized
68 _ = c.fine_tuner
Create the Pipe module
71 with monit.section('Pipe'):
Get the layer distribution across GPUs
73 balance = balance_layers_simple(len(layers), c.n_gpus)
74 inspect(balance=balance)
Devices for each GPU
76 devices = [torch.device(f'cuda:{i}') for i in range(c.n_gpus)]
Create Fairscale Pipe module
78 pipe_model = fairscale.nn.Pipe(nn.Sequential(*layers),
79 balance=balance,
80 devices=devices,
81 chunks=c.chunks)
84 return pipe_model
87@option(PipelineParallelTrainerConf.train_loader)
88def tiny_shakespeare(c: PipelineParallelTrainerConf):
92 dataset = get_training_data(c.max_seq_len)
93
94 return DataLoader(dataset,
95 batch_size=c.batch_size,
96 sampler=RandomSampler(dataset, replacement=True))
99def main():
Create experiment
101 experiment.create(name='pipe_neox_biases',
102 writers={'screen', 'web_api'})
Initialize configs
105 conf = PipelineParallelTrainerConf()
106 experiment.configs(conf, {
107 'learning_rate': 3e-4,
108 'is_checkpointing': False,
109 'max_seq_len': 128,
110 'batch_size': 64,
111 'chunks': 8,
112 })
Start the experiment
115 with experiment.start():
Initialize the model. Do this before the loop for cleaner logs.
117 _ = conf.model
Train
120 for epoch in monit.loop(conf.epochs):
121 conf.train_epoch()
122 tracker.new_line()
123 torch.save(conf.fine_tuner.state_dict(), str(lab.get_data_path() / 'fine_tune.pt'))
127if __name__ == '__main__':
128 main()