This MNIST example uses these optimizers.
This file defines a common base class for Adam and extensions of it. The base class helps use implement other optimizers with minimal code because of re-usability.
We also define a special class for L2 weight decay, so that we don't have to implement it inside each of the optimizers, and can easily extend to other weight decays like L1 without changing the optimizers.
Here are some concepts on PyTorch optimizers:
PyTorch optimizers group parameters into sets called groups. Each group can have its own hyper-parameters like learning rates.
In most common cases there will be only one group. This is when you initialize your optimizer with,
Optimizer(model.parameters())
You can define multiple parameter groups when initializing the optimizer:
Optimizer([{'params': model1.parameters()}, {'params': model2.parameters(), 'lr': 2}])
Here we pass a list of groups. Each group is a dictionary with its parameters under the key 'params'. You specify any hyper-parameters as well. If the hyper parameters are not defined they will default to the optimizer level defaults.
You can access (and even change) these groups, and their hyper-parameters with optimizer.param_groups
. Most learning rate schedule implementations I've come across do access this and change 'lr'.
Optimizer maintains states (a dictionary) for each parameter (a tensor), in a dictionary optimizer.state
. This is where the optimizer maintains things like exponential averages.
63from typing import Dict, Tuple, Any
64
65import torch
66from torch import nn
67from torch.optim.optimizer import Optimizer
70class GenericAdaptiveOptimizer(Optimizer):
params
is the collection of parameters or set of parameter groups. defaults
a dictionary of default hyper-parameters lr
is the learning rate, betas
is the tuple eps
is 75 def __init__(self, params, defaults: Dict[str, Any], lr: float, betas: Tuple[float, float], eps: float):
Check the hyper-parameters
87 if not 0.0 <= lr:
88 raise ValueError(f"Invalid learning rate: {lr}")
89 if not 0.0 <= eps:
90 raise ValueError(f"Invalid epsilon value: {eps}")
91 if not 0.0 <= betas[0] < 1.0:
92 raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
93 if not 0.0 <= betas[1] < 1.0:
94 raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
Add the hyper-parameters to the defaults
97 defaults.update(dict(lr=lr, betas=betas, eps=eps))
Initialize the PyTorch optimizer. This will create parameter groups with the default hyper-parameters
100 super().__init__(params, defaults)
This should be overridden with code to initialize state
for parameters param
. group
is the parameter group dictionary to which param
belongs.
102 def init_state(self, state: Dict[str, any], group: Dict[str, any], param: nn.Parameter):
109 pass
This should be overridden and take the optimization step on param
tensor , where grad
is the gradient for that parameter, , state
is the optimizer state dictionary for that parameter, and group
is the parameter group dictionary param
belongs to.
111 def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.Tensor):
120 pass
We have created a template method that does the common stuff every Adam based optimizer needs.
122 @torch.no_grad()
123 def step(self, closure=None):
Calculate loss.
🤔 I'm not sure when you need this. I guess it's if you define a function that calculates the loss, does loss.backward
and return the loss, instead of calling it on your own you could pass it to optimizer.step
. 🤷♂️
134 loss = None
135 if closure is not None:
136 with torch.enable_grad():
137 loss = closure()
Iterate through the parameter groups
140 for group in self.param_groups:
Iterate through the parameters in the parameter group
142 for param in group['params']:
Skip if the parameter has no gradient
144 if param.grad is None:
145 continue
Get the gradient tensor
147 grad = param.grad.data
We don't handle sparse gradients
149 if grad.is_sparse:
150 raise RuntimeError('GenericAdaptiveOptimizer does not support sparse gradients,'
151 ' please consider SparseAdam instead')
Get the state for the parameter
154 state = self.state[param]
Initialize the state if state is uninitialized
157 if len(state) == 0:
158 self.init_state(state, group, param)
Take the optimization step on the parameter
161 self.step_param(state, group, grad, param)
Return the loss, calculated from closure
164 return loss
167class WeightDecay:
weight_decay
is the decay coefficient weight_decouple
is a flag indicating whether to add the weight decay to the gradient or directly decay from the parameter. If added to the gradient it will go through the normal optimizer update. absolute
this flag indicates whether the weight decay coefficient is absolute. This is applicable when the decay is performed directly on the parameter. If this is false the actual decay is weight_decay
learning_rate
.172 def __init__(self, weight_decay: float = 0., weight_decouple: bool = True, absolute: bool = False):
Check hyper-parameters
185 if not 0.0 <= weight_decay:
186 raise ValueError(f"Invalid weight_decay value: {weight_decay}")
187
188 self.absolute = absolute
189 self.weight_decouple = weight_decouple
190 self.weight_decay = weight_decay
Return defaults for parameter groups
192 def defaults(self):
196 return dict(weight_decay=self.weight_decay)
198 def __call__(self, param: torch.nn.Parameter, grad: torch.Tensor, group: Dict[str, any]):
If we are doing the decay on the parameter directly
204 if self.weight_decouple:
If the weight decay coefficient is absolute
206 if self.absolute:
207 param.data.mul_(1.0 - group['weight_decay'])
Otherwise,
209 else:
210 param.data.mul_(1.0 - group['lr'] * group['weight_decay'])
Return the unmodified gradient
212 return grad
213 else:
214 if group['weight_decay'] != 0:
Add the weight decay to the gradient and return the modified gradient
216 return grad.add(param.data, alpha=group['weight_decay'])
217 else:
218 return grad