10import torch
11
12from labml import experiment, tracker
Import configurations from Wasserstein experiment
14from labml_nn.gan.wasserstein.experiment import Configs as OriginalConfigs
16from labml_nn.gan.wasserstein.gradient_penalty import GradientPenalty
We extend original GAN implementation and override the discriminator (critic) loss calculation to include gradient penalty.
19class Configs(OriginalConfigs):
Gradient penalty coefficient
28 gradient_penalty_coefficient: float = 10.0
30 gradient_penalty = GradientPenalty()
This overrides the original discriminator loss calculation and includes gradient penalty.
32 def calc_discriminator_loss(self, data: torch.Tensor):
Require gradients on to calculate gradient penalty
38 data.requires_grad_()
Sample
40 latent = self.sample_z(data.shape[0])
42 f_real = self.discriminator(data)
44 f_fake = self.discriminator(self.generator(latent).detach())
Get discriminator losses
46 loss_true, loss_false = self.discriminator_loss(f_real, f_fake)
Calculate gradient penalties in training mode
48 if self.mode.is_train:
49 gradient_penalty = self.gradient_penalty(data, f_real)
50 tracker.add("loss.gp.", gradient_penalty)
51 loss = loss_true + loss_false + self.gradient_penalty_coefficient * gradient_penalty
Skip gradient penalty otherwise
53 else:
54 loss = loss_true + loss_false
Log stuff
57 tracker.add("loss.discriminator.true.", loss_true)
58 tracker.add("loss.discriminator.false.", loss_false)
59 tracker.add("loss.discriminator.", loss)
60
61 return loss
64def main():
Create configs object
66 conf = Configs()
Create experiment
68 experiment.create(name='mnist_wassertein_gp_dcgan')
Override configurations
70 experiment.configs(conf,
71 {
72 'discriminator': 'cnn',
73 'generator': 'cnn',
74 'label_smoothing': 0.01,
75 'generator_loss': 'wasserstein',
76 'discriminator_loss': 'wasserstein',
77 'discriminator_k': 5,
78 })
Start the experiment and run training loop
81 with experiment.start():
82 conf.run()
83
84
85if __name__ == '__main__':
86 main()