9from labml import experiment
10
11from labml.configs import calculate
Import configurations from DCGAN experiment
13from labml_nn.gan.dcgan import Configs
Import Wasserstein GAN losses
16from labml_nn.gan.wasserstein import GeneratorLoss, DiscriminatorLoss
Set configurations options for Wasserstein GAN losses
19calculate(Configs.generator_loss, 'wasserstein', lambda c: GeneratorLoss())
20calculate(Configs.discriminator_loss, 'wasserstein', lambda c: DiscriminatorLoss())
23def main():
Create configs object
25 conf = Configs()
Create experiment
27 experiment.create(name='mnist_wassertein_dcgan', comment='test')
Override configurations
29 experiment.configs(conf,
30 {
31 'discriminator': 'cnn',
32 'generator': 'cnn',
33 'label_smoothing': 0.01,
34 'generator_loss': 'wasserstein',
35 'discriminator_loss': 'wasserstein',
36 })
Start the experiment and run training loop
39 with experiment.start():
40 conf.run()
41
42
43if __name__ == '__main__':
44 main()