Denoising Diffusion Probabilistic Models (DDPM) Sampling

For a simpler DDPM implementation refer to our DDPM implementation. We use same notations for , schedules, etc.

16from typing import Optional, List
17
18import numpy as np
19import torch
20
21from labml import monit
22from labml_nn.diffusion.stable_diffusion.latent_diffusion import LatentDiffusion
23from labml_nn.diffusion.stable_diffusion.sampler import DiffusionSampler

DDPM Sampler

This extends the DiffusionSampler base class.

DDPM samples images by repeatedly removing noise by sampling step by step from ,

26class DDPMSampler(DiffusionSampler):
49    model: LatentDiffusion
  • model is the model to predict noise
51    def __init__(self, model: LatentDiffusion):
55        super().__init__(model)

Sampling steps

58        self.time_steps = np.asarray(list(range(self.n_steps)))
59
60        with torch.no_grad():

62            alpha_bar = self.model.alpha_bar

schedule

64            beta = self.model.beta

66            alpha_bar_prev = torch.cat([alpha_bar.new_tensor([1.]), alpha_bar[:-1]])

69            self.sqrt_alpha_bar = alpha_bar ** .5

71            self.sqrt_1m_alpha_bar = (1. - alpha_bar) ** .5

73            self.sqrt_recip_alpha_bar = alpha_bar ** -.5

75            self.sqrt_recip_m1_alpha_bar = (1 / alpha_bar - 1) ** .5

78            variance = beta * (1. - alpha_bar_prev) / (1. - alpha_bar)

Clamped log of

80            self.log_var = torch.log(torch.clamp(variance, min=1e-20))

82            self.mean_x0_coef = beta * (alpha_bar_prev ** .5) / (1. - alpha_bar)

84            self.mean_xt_coef = (1. - alpha_bar_prev) * ((1 - beta) ** 0.5) / (1. - alpha_bar)

Sampling Loop

  • shape is the shape of the generated images in the form [batch_size, channels, height, width]
  • cond is the conditional embeddings
  • temperature is the noise temperature (random noise gets multiplied by this)
  • x_last is . If not provided random noise will be used.
  • uncond_scale is the unconditional guidance scale . This is used for
  • uncond_cond is the conditional embedding for empty prompt
  • skip_steps is the number of time steps to skip . We start sampling from . And x_last is then .
86    @torch.no_grad()
87    def sample(self,
88               shape: List[int],
89               cond: torch.Tensor,
90               repeat_noise: bool = False,
91               temperature: float = 1.,
92               x_last: Optional[torch.Tensor] = None,
93               uncond_scale: float = 1.,
94               uncond_cond: Optional[torch.Tensor] = None,
95               skip_steps: int = 0,
96               ):

Get device and batch size

113        device = self.model.device
114        bs = shape[0]

Get

117        x = x_last if x_last is not None else torch.randn(shape, device=device)

Time steps to sample at

120        time_steps = np.flip(self.time_steps)[skip_steps:]

Sampling loop

123        for step in monit.iterate('Sample', time_steps):

Time step

125            ts = x.new_full((bs,), step, dtype=torch.long)

Sample

128            x, pred_x0, e_t = self.p_sample(x, cond, ts, step,
129                                            repeat_noise=repeat_noise,
130                                            temperature=temperature,
131                                            uncond_scale=uncond_scale,
132                                            uncond_cond=uncond_cond)

Return

135        return x

Sample from

  • x is of shape [batch_size, channels, height, width]
  • c is the conditional embeddings of shape [batch_size, emb_size]
  • t is of shape [batch_size]
  • step is the step as an integer :repeat_noise: specified whether the noise should be same for all samples in the batch
  • temperature is the noise temperature (random noise gets multiplied by this)
  • uncond_scale is the unconditional guidance scale . This is used for
  • uncond_cond is the conditional embedding for empty prompt
137    @torch.no_grad()
138    def p_sample(self, x: torch.Tensor, c: torch.Tensor, t: torch.Tensor, step: int,
139                 repeat_noise: bool = False,
140                 temperature: float = 1.,
141                 uncond_scale: float = 1., uncond_cond: Optional[torch.Tensor] = None):

Get

157        e_t = self.get_eps(x, t, c,
158                           uncond_scale=uncond_scale,
159                           uncond_cond=uncond_cond)

Get batch size

162        bs = x.shape[0]

165        sqrt_recip_alpha_bar = x.new_full((bs, 1, 1, 1), self.sqrt_recip_alpha_bar[step])

167        sqrt_recip_m1_alpha_bar = x.new_full((bs, 1, 1, 1), self.sqrt_recip_m1_alpha_bar[step])

Calculate with current

172        x0 = sqrt_recip_alpha_bar * x - sqrt_recip_m1_alpha_bar * e_t

175        mean_x0_coef = x.new_full((bs, 1, 1, 1), self.mean_x0_coef[step])

177        mean_xt_coef = x.new_full((bs, 1, 1, 1), self.mean_xt_coef[step])

Calculate

183        mean = mean_x0_coef * x0 + mean_xt_coef * x

185        log_var = x.new_full((bs, 1, 1, 1), self.log_var[step])

Do not add noise when (final step sampling process). Note that step is 0 when )

189        if step == 0:
190            noise = 0

If same noise is used for all samples in the batch

192        elif repeat_noise:
193            noise = torch.randn((1, *x.shape[1:]))

Different noise for each sample

195        else:
196            noise = torch.randn(x.shape)

Multiply noise by the temperature

199        noise = noise * temperature

Sample from,

204        x_prev = mean + (0.5 * log_var).exp() * noise

207        return x_prev, x0, e_t

Sample from

  • x0 is of shape [batch_size, channels, height, width]
  • index is the time step index
  • noise is the noise,
209    @torch.no_grad()
210    def q_sample(self, x0: torch.Tensor, index: int, noise: Optional[torch.Tensor] = None):

Random noise, if noise is not specified

222        if noise is None:
223            noise = torch.randn_like(x0)

Sample from

226        return self.sqrt_alpha_bar[index] * x0 + self.sqrt_1m_alpha_bar[index] * noise