变压器编码器和解码器模型

Open In Colab

13import math
14
15import torch
16import torch.nn as nn
17
18from labml_nn.utils import clone_module_list
19from .feed_forward import FeedForward
20from .mha import MultiHeadAttention
21from .positional_encoding import get_positional_encoding

嵌入令牌并添加固定位置编码

24class EmbeddingsWithPositionalEncoding(nn.Module):
31    def __init__(self, d_model: int, n_vocab: int, max_len: int = 5000):
32        super().__init__()
33        self.linear = nn.Embedding(n_vocab, d_model)
34        self.d_model = d_model
35        self.register_buffer('positional_encodings', get_positional_encoding(d_model, max_len))
37    def forward(self, x: torch.Tensor):
38        pe = self.positional_encodings[:x.shape[0]].requires_grad_(False)
39        return self.linear(x) * math.sqrt(self.d_model) + pe

嵌入令牌并添加参数化的位置编码

42class EmbeddingsWithLearnedPositionalEncoding(nn.Module):
49    def __init__(self, d_model: int, n_vocab: int, max_len: int = 5000):
50        super().__init__()
51        self.linear = nn.Embedding(n_vocab, d_model)
52        self.d_model = d_model
53        self.positional_encodings = nn.Parameter(torch.zeros(max_len, 1, d_model), requires_grad=True)
55    def forward(self, x: torch.Tensor):
56        pe = self.positional_encodings[:x.shape[0]]
57        return self.linear(x) * math.sqrt(self.d_model) + pe

变压器层

它可以充当编码器层或解码器层。

🗒 包括论文在内的一些实现似乎在图层归一化的位置上存在差异。在这里,我们在注意力和前馈网络之前进行层归一化,并添加原始残差向量。另一种方法是在添加残差后进行图层归一化。但是我们发现在训练时这种情况不太稳定。我们在《变压器架构中的层规范化》一文中找到了对此的详细讨论。

60class TransformerLayer(nn.Module):
  • d_model 是令牌嵌入的大小
  • self_attn 是自我关注模块
  • src_attn 是源关注模块(当它在解码器中使用时)
  • feed_forward 是前馈模块
  • dropout_prob 是自我关注和 FFN 后退学的概率
78    def __init__(self, *,
79                 d_model: int,
80                 self_attn: MultiHeadAttention,
81                 src_attn: MultiHeadAttention = None,
82                 feed_forward: FeedForward,
83                 dropout_prob: float):
91        super().__init__()
92        self.size = d_model
93        self.self_attn = self_attn
94        self.src_attn = src_attn
95        self.feed_forward = feed_forward
96        self.dropout = nn.Dropout(dropout_prob)
97        self.norm_self_attn = nn.LayerNorm([d_model])
98        if self.src_attn is not None:
99            self.norm_src_attn = nn.LayerNorm([d_model])
100        self.norm_ff = nn.LayerNorm([d_model])

是否将输入保存到前馈层

102        self.is_save_ff_input = False
104    def forward(self, *,
105                x: torch.Tensor,
106                mask: torch.Tensor,
107                src: torch.Tensor = None,
108                src_mask: torch.Tensor = None):

在进行自我注意之前对向量进行归一化

110        z = self.norm_self_attn(x)

通过自我关注,即关键和价值来自自我

112        self_attn = self.self_attn(query=z, key=z, value=z, mask=mask)

添加自我关注的结果

114        x = x + self.dropout(self_attn)

如果提供了来源,则从关注源获取结果。这是当你有一个关注编码器输出的解码器层

119        if src is not None:

归一化向量

121            z = self.norm_src_attn(x)

注意源。即键和值来自源

123            attn_src = self.src_attn(query=z, key=src, value=src, mask=src_mask)

添加来源关注结果

125            x = x + self.dropout(attn_src)

标准化以进行前馈

128        z = self.norm_ff(x)

如果已指定,则将输入保存到前馈图层

130        if self.is_save_ff_input:
131            self.ff_input = z.clone()

通过前馈网络

133        ff = self.feed_forward(z)

将前馈结果添加回来

135        x = x + self.dropout(ff)
136
137        return x

变压器编码

140class Encoder(nn.Module):
147    def __init__(self, layer: TransformerLayer, n_layers: int):
148        super().__init__()

制作变压器层的副本

150        self.layers = clone_module_list(layer, n_layers)

最终归一化层

152        self.norm = nn.LayerNorm([layer.size])
154    def forward(self, x: torch.Tensor, mask: torch.Tensor):

穿过每个变压器层

156        for layer in self.layers:
157            x = layer(x=x, mask=mask)

最后,对向量进行归一化

159        return self.norm(x)

变压器解码器

162class Decoder(nn.Module):
169    def __init__(self, layer: TransformerLayer, n_layers: int):
170        super().__init__()

制作变压器层的副本

172        self.layers = clone_module_list(layer, n_layers)

最终归一化层

174        self.norm = nn.LayerNorm([layer.size])
176    def forward(self, x: torch.Tensor, memory: torch.Tensor, src_mask: torch.Tensor, tgt_mask: torch.Tensor):

穿过每个变压器层

178        for layer in self.layers:
179            x = layer(x=x, mask=tgt_mask, src=memory, src_mask=src_mask)

最后,对向量进行归一化

181        return self.norm(x)

发电机

这可以预测令牌并给出其中的lof softmax。如果你正在使用,你不需要这个nn.CrossEntropyLoss

184class Generator(nn.Module):
194    def __init__(self, n_vocab: int, d_model: int):
195        super().__init__()
196        self.projection = nn.Linear(d_model, n_vocab)
198    def forward(self, x):
199        return self.projection(x)

组合式编码器-解码器

202class EncoderDecoder(nn.Module):
209    def __init__(self, encoder: Encoder, decoder: Decoder, src_embed: nn.Module, tgt_embed: nn.Module, generator: nn.Module):
210        super().__init__()
211        self.encoder = encoder
212        self.decoder = decoder
213        self.src_embed = src_embed
214        self.tgt_embed = tgt_embed
215        self.generator = generator

从他们的代码来看,这很重要。使用 Glorot/fan_avg 初始化参数。

219        for p in self.parameters():
220            if p.dim() > 1:
221                nn.init.xavier_uniform_(p)
223    def forward(self, src: torch.Tensor, tgt: torch.Tensor, src_mask: torch.Tensor, tgt_mask: torch.Tensor):

通过编码器运行源码

225        enc = self.encode(src, src_mask)

通过解码器运行编码和目标

227        return self.decode(enc, src_mask, tgt, tgt_mask)
229    def encode(self, src: torch.Tensor, src_mask: torch.Tensor):
230        return self.encoder(self.src_embed(src), src_mask)
232    def decode(self, memory: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor):
233        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)