11from labml import experiment
12from labml.configs import option
13from labml_nn.experiments.cifar10 import CIFAR10Configs
14from labml_nn.transformers import TransformerConfigsWe use CIFAR10Configs
which defines all the dataset related configurations, optimizer, and a training loop.
17class Configs(CIFAR10Configs):27 transformer: TransformerConfigsSize of a patch
30 patch_size: int = 4Size of the hidden layer in classification head
32 n_hidden_classification: int = 2048Number of classes in the task
34 n_classes: int = 10Create transformer configs
37@option(Configs.transformer)
38def _transformer():42 return TransformerConfigs()45@option(Configs.model)
46def _vit(c: Configs):50 from labml_nn.transformers.vit import VisionTransformer, LearnedPositionalEmbeddings, ClassificationHead, \
51 PatchEmbeddingsTransformer size from Transformer configurations
54 d_model = c.transformer.d_modelCreate a vision transformer
56 return VisionTransformer(c.transformer.encoder_layer, c.transformer.n_layers,
57 PatchEmbeddings(d_model, c.patch_size, 3),
58 LearnedPositionalEmbeddings(d_model),
59 ClassificationHead(d_model, c.n_hidden_classification, c.n_classes)).to(c.device)62def main():Create experiment
64 experiment.create(name='ViT', comment='cifar10')Create configurations
66 conf = Configs()Load configurations
68 experiment.configs(conf, {Optimizer
70 'optimizer.optimizer': 'Adam',
71 'optimizer.learning_rate': 2.5e-4,Transformer embedding size
74 'transformer.d_model': 512,Training epochs and batch size
77 'epochs': 32,
78 'train_batch_size': 64,Augment CIFAR 10 images for training
81 'train_dataset': 'cifar10_train_augmented',Do not augment CIFAR 10 images for validation
83 'valid_dataset': 'cifar10_valid_no_augment',
84 })Set model for saving/loading
86 experiment.add_pytorch_models({'model': conf.model})Start the experiment and run the training loop
88 with experiment.start():
89 conf.run()93if __name__ == '__main__':
94 main()