This is an annotated PyTorch experiment to train a transformer model with Rotary Positional Embeddings (RoPE).
12from labml import experiment
13from labml.configs import calculate
14from labml_nn.transformers import TransformerConfigs
15from labml_nn.transformers.rope.experiment import Configs as RoPEConfigs
20class Configs(RoPEConfigs): # , ArithmeticAutoregression):
21 pass
24def _rotary_value_pe_mha(c: TransformerConfigs):
25 from labml_nn.transformers.rope.value_pe import RotaryValuePEMultiHeadAttention
26 return RotaryValuePEMultiHeadAttention(c.n_heads, c.d_model, 1., 1.)
Configuration options
30calculate(TransformerConfigs.encoder_attn, 'rotary_value', _rotary_value_pe_mha)
31calculate(TransformerConfigs.decoder_attn, 'rotary_value', _rotary_value_pe_mha)
32calculate(TransformerConfigs.decoder_mem_attn, 'rotary_value', _rotary_value_pe_mha)
35def main():
Create experiment
37 experiment.create(name="rotary_shakespeare", comment="rotary value", writers={'screen', 'labml'})
Create configs
39 conf = Configs()
Override configurations
41 experiment.configs(conf, {
No fixed positional embeddings
43 'transformer.src_embed': 'no_pos',
44 'transformer.tgt_embed': 'no_pos',
Encoder with RoPE
47 'transformer.encoder_attn': 'rotary_value',
'transformer.encoder_attn': 'rotary',
51 'model': 'rotary_pe_transformer',
Use character level tokenizer
54 'tokenizer': 'character',
Prompt separator is blank
56 'prompt_separator': '',
Starting prompt for sampling
58 'prompt': 'It is ',
Use Tiny Shakespeare dataset
60 'text': 'tiny_shakespeare',
Use a context size of
63 'seq_len': 512,
Train for 32 epochs
65 'epochs': 24,
Batch size
67 'batch_size': 16,
Switch between training and validation for times per epoch
70 'inner_iterations': 4,
Model size
73 'd_model': 128,
74 'transformer.ffn.d_ff': 512,
75 'transformer.n_heads': 4,
76 'transformer.dropout': 0.0,
Use Adam optimizer
79 'optimizer.optimizer': 'Adam',
80 'optimizer.learning_rate': 2.5e-4,
81
82 'dataloader_shuffle_with_replacement': True
83 })
Set models for saving and loading
86 experiment.add_pytorch_models({'model': conf.model})
Start the experiment
89 with experiment.start():
Run training
91 conf.run()
95if __name__ == '__main__':
96 main()