This is an annotated PyTorch experiment to train a transformer model with Rotary Positional Embeddings (RoPE).
12from labml import experiment
13from labml.configs import option, calculate
14from labml_nn.transformers import TransformerConfigs
15from labml_nn.transformers.basic.autoregressive_experiment import AutoregressiveTransformer, Configs
19def _rotary_pe_mha(c: TransformerConfigs):
20 from labml_nn.transformers.rope import RotaryPEMultiHeadAttention
21 return RotaryPEMultiHeadAttention(c.n_heads, c.d_model, 1.)
Configuration options
25calculate(TransformerConfigs.encoder_attn, 'rotary', _rotary_pe_mha)
26calculate(TransformerConfigs.decoder_attn, 'rotary', _rotary_pe_mha)
27calculate(TransformerConfigs.decoder_mem_attn, 'rotary', _rotary_pe_mha)
Create an autoregressive model and initialize weights
30@option(Configs.model, 'rotary_pe_transformer')
31def _model(c: Configs):
35 m = AutoregressiveTransformer(c.transformer.encoder,
36 c.transformer.src_embed,
37 c.transformer.generator).to(c.device)
38
39 return m
42def main():
Create experiment
44 experiment.create(name="rotary_pe_transformer", writers={'screen'})
Create configs
46 conf = Configs()
Override configurations
48 experiment.configs(conf, {
No fixed positional embeddings
50 'transformer.src_embed': 'no_pos',
51 'transformer.tgt_embed': 'no_pos',
Encoder with RoPE
54 'transformer.encoder_attn': 'rotary',
57 'model': 'rotary_pe_transformer',
Use character level tokenizer
60 'tokenizer': 'character',
Prompt separator is blank
62 'prompt_separator': '',
Starting prompt for sampling
64 'prompt': 'It is ',
Use Tiny Shakespeare dataset
66 'text': 'tiny_shakespeare',
Use a context size of
69 'seq_len': 512,
Train for 32 epochs
71 'epochs': 32,
Batch size
73 'batch_size': 4,
Switch between training and validation for times per epoch
76 'inner_iterations': 10,
Model size
79 'd_model': 128,
80 'transformer.ffn.d_ff': 512,
81 'transformer.n_heads': 16,
82 'transformer.dropout': 0.0,
Use Noam optimizer
85 'optimizer.optimizer': 'Noam',
86 'optimizer.learning_rate': 1.,
87
88 'dataloader_shuffle_with_replacement': True
89 })
Set models for saving and loading
92 experiment.add_pytorch_models({'model': conf.model})
Start the experiment
95 with experiment.start():
Run training
97 conf.run()
101if __name__ == '__main__':
102 main()