12from labml import experiment
13from labml.configs import option
14from labml_nn.transformers import TransformerConfigs
15from labml_nn.transformers.configs import FeedForwardConfigs
16from labml_nn.transformers.mlm.experiment import TransformerMLM, Configs as MLMConfigs
This inherits from MLMConfigs
where we define an experiment for Masked Language Models.
19class Configs(MLMConfigs):
Configurable Feed-Forward Network for the MLP
29 mix_mlp: FeedForwardConfigs
The mixing MLP configurations
32@option(Configs.mix_mlp)
33def _mix_mlp_configs(c: Configs):
38 conf = FeedForwardConfigs()
Size of the MLP is the sequence length, because it is applied across tokens
40 conf.d_model = c.seq_len
The paper suggests activation
42 conf.activation = 'GELU'
45 return conf
48@option(Configs.transformer)
49def _transformer_configs(c: Configs):
We use our configurable transformer implementation
56 conf = TransformerConfigs()
Set the vocabulary sizes for embeddings and generating logits
58 conf.n_src_vocab = c.n_tokens
59 conf.n_tgt_vocab = c.n_tokens
Embedding size
61 conf.d_model = c.d_model
63 from labml_nn.transformers.mlp_mixer import MLPMixer
64 conf.encoder_attn = MLPMixer(c.mix_mlp.ffn)
67 return conf
70def main():
Create experiment
72 experiment.create(name="mlp_mixer_mlm")
Create configs
74 conf = Configs()
Override configurations
76 experiment.configs(conf, {
Batch size
78 'batch_size': 64,
Sequence length of . We use a short sequence length to train faster. Otherwise MLM models take forever to train.
81 'seq_len': 32,
Train for 1024 epochs.
84 'epochs': 1024,
Switch between training and validation for times per epoch
87 'inner_iterations': 1,
Transformer configurations
90 'd_model': 128,
91 'transformer.ffn.d_ff': 256,
92 'transformer.n_heads': 8,
93 'transformer.n_layers': 6,
94 'transformer.ffn.activation': 'GELU',
Mixer MLP hidden layer size
97 'mix_mlp.d_ff': 128,
Use Noam optimizer
100 'optimizer.optimizer': 'Noam',
101 'optimizer.learning_rate': 1.,
102 })
Set models for saving and loading
105 experiment.add_pytorch_models({'model': conf.model})
Start the experiment
108 with experiment.start():
Run training
110 conf.run()
114if __name__ == '__main__':
115 main()