Label Smoothing Loss

11import matplotlib.pyplot as plt
12import numpy as np
13
14import torch
15from torch import nn
18class LabelSmoothingLoss(nn.Module):
19    def __init__(self, size: int, padding_idx: int, smoothing: float = 0.0):
20        super().__init__()
21        self.loss = nn.KLDivLoss(reduction='sum')
22        self.padding_idx = padding_idx
23        self.confidence = 1.0 - smoothing
24        self.smoothing = smoothing
25        self.size = size
26        self.true_dist = None
28    def forward(self, x: torch.Tensor, target: torch.Tensor):
29        assert x.shape[1] == self.size
30        true_dist = x.clone()
31        true_dist.fill_(self.smoothing / (self.size - 2))
32        true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
33        true_dist[:, self.padding_idx] = 0
34        mask = torch.nonzero(target == self.padding_idx, as_tuple=False)
35        if mask.dim() > 0:
36            true_dist.index_fill_(0, mask.squeeze(), 0.0)
37        self.true_dist = true_dist
38        return self.loss(x, true_dist.detach())
41def _test_label_smoothing():
42    smooth_loss = LabelSmoothingLoss(5, 0, 0.4)
43    predict = torch.tensor([[0, 0.2, 0.7, 0.1, 0],
44                            [0, 0.2, 0.7, 0.1, 0],
45                            [0, 0.2, 0.7, 0.1, 0]], dtype=torch.float)
46    _ = smooth_loss(predict.log(),
47                    torch.tensor([2, 1, 0], dtype=torch.long))

Show the target distributions expected by the system.

50    plt.imshow(smooth_loss.true_dist)
51    plt.show()
52
53    smooth_loss = LabelSmoothingLoss(5, 0, 0.1)
55    def loss_sample(x):
56        d = x + 3 * 1
57        predict2 = torch.tensor([[0, x / d, 1 / d, 1 / d, 1 / d],
58                                 ], dtype=torch.float)

print(predict)

60        return smooth_loss(predict2.log(),
61                           torch.tensor([1], dtype=torch.long)).item()
62
63    plt.plot(np.arange(1, 100), [loss_sample(x) for x in range(1, 100)])
64    plt.show()
65
66
67if __name__ == '__main__':
68    _test_label_smoothing()