This is an annotated PyTorch experiment to train a AFT model.
This is based on general training loop and configurations for auto-regressive NLP task.
14import torch
15
16from labml import experiment
17from labml.configs import option
18from labml_helpers.module import Module
19from labml_nn.experiments.nlp_autoregression import NLPAutoRegressionConfigs
20from labml_nn.transformers import TransformerConfigs, Encoder
21from labml_nn.transformers.utils import subsequent_mask
This consists of a token embedding layer, transformer encoder, and a final linear layer that gives token logits.
24class AutoregressiveTransformer(Module):
encoder
is the transformer Encoder src_embed
is the token embedding module (with positional encodings) generator
is the final fully connected layer that gives the logits.32 def __init__(self, encoder: Encoder, src_embed: Module, generator: Module):
39 super().__init__()
40 self.src_embed = src_embed
41 self.encoder = encoder
42 self.generator = generator
The mask will be initialized on the first call
45 self.mask = None
47 def forward(self, x: torch.Tensor):
Create subsequent mask if mask is not initialized or if the size of the mask is different
50 if self.mask is None or self.mask.size(0) != len(x):
Subsequent mask, will mask out tokens from seeing future tokens
52 self.mask = subsequent_mask(len(x)).to(x.device)
Get the token embeddings with positional encodings
55 x = self.src_embed(x)
Transformer encoder
57 x = self.encoder(x, self.mask)
Get logits
59 x = self.generator(x)
Return results (second value is for state, since our trainer is used with RNNs also)
63 return x, None
66class Configs(NLPAutoRegressionConfigs):
GPT model
75 model: AutoregressiveTransformer
Transformer
77 transformer: TransformerConfigs
78
79 local_window_size: int = 32
82@option(Configs.transformer, 'Transformer')
83def _transformer_configs(c: Configs):
We use our configurable transformer implementation
90 conf = TransformerConfigs()
Set the vocabulary sizes for embeddings and generating logits
92 conf.n_src_vocab = c.n_tokens
93 conf.n_tgt_vocab = c.n_tokens
Set the embedding size
95 conf.d_model = c.d_model
Replace self-attention with an AFT Local Module
97 from labml_nn.transformers.aft import AFTLocal
98 conf.encoder_attn = AFTLocal(c.d_model, c.seq_len, c.local_window_size)
101 return conf
Create an auto-regressive model
104@option(Configs.model)
105def _model(c: Configs):
109 m = AutoregressiveTransformer(c.transformer.encoder,
110 c.transformer.src_embed,
111 c.transformer.generator).to(c.device)
112
113 return m
116def main():
Create experiment
118 experiment.create(name="aft")
Create configs
120 conf = Configs()
Override configurations
122 experiment.configs(conf, {
Use character level tokenizer
124 'tokenizer': 'character',
Prompt separator is blank
126 'prompt_separator': '',
Starting prompt for sampling
128 'prompt': 'It is ',
Use Tiny Shakespeare dataset
130 'text': 'tiny_shakespeare',
Use a context size of
133 'seq_len': 256,
Train for epochs
135 'epochs': 128,
Batch size
137 'batch_size': 32,
Switch between training and validation for times per epoch
140 'inner_iterations': 10,
Embedding size
143 'd_model': 128,
FFN hidden dimension size
145 'transformer.ffn.d_ff': 256,
Optimizer
148 'optimizer.optimizer': 'Noam',
149 'optimizer.learning_rate': 1.,
150 })
Set models for saving and loading
153 experiment.add_pytorch_models({'model': conf.model})
Start the experiment
156 with experiment.start():
Run training
158 conf.run()
162if __name__ == '__main__':
163 main()