This experiment uses the above sampling techniques, on HuggingFace's GPT2 model.
18import torch
19
20from labml import monit, logger, lab
21
22from labml.logger import Text
23
24from labml_nn.sampling import Sampler
25from labml_nn.sampling.greedy import GreedySampler
26from labml_nn.sampling.nucleus import NucleusSampler
27from labml_nn.sampling.temperature import TemperatureSampler
28from labml_nn.sampling.top_k import TopKSampler
29from transformers import GPT2Tokenizer, GPT2LMHeadModel
model
is the model to sample from tokenizer
is the tokenizer to use sampler
is the sampler to use n_samples
is the number of samples to generate n_tokens
is the number of tokens to generate seq_len
is the maximum sequence length for the model prompt
is the starting prompt32@torch.no_grad()
33def sample(model: GPT2LMHeadModel, tokenizer: GPT2Tokenizer, sampler: Sampler,
34 n_samples: int, n_tokens: int, seq_len: int, prompt: str):
Tokenize the prompt
and make n_samples
copies of it
47 data = torch.tile(torch.tensor(tokenizer.encode(prompt))[None, :], (n_samples, 1))
Collect output for printing
50 logs = [[(prompt, Text.meta)] for _ in range(n_samples)]
Sample n_tokens
52 for i in monit.iterate('Sample', n_tokens):
Truncate the data to the maximum sequence length
54 data = data[-seq_len:]
Get the model output. The 'logits' has shape [batch_size, seq_len, n_tokens]
56 logits = model(data)[0]
Get the logits
of the last token
58 logits = logits[:, -1]
Sample from the logits
60 res = sampler(logits)
Add the sampled token to the data
62 data = torch.cat([data, res[:, None]], dim=1)
Decode and add the sampled token for logging
64 for j in range(n_samples):
65 logs[j] += [('' + tokenizer.decode(res[j]), Text.value)]
Print the sampled outputs
68 for j in range(n_samples):
69 logger.log(logs[j])
72def main():
Load the model and tokenizer
78 with monit.section('Load tokenizer/model'):
79 tokenizer = GPT2Tokenizer.from_pretrained('gpt2', cache_dir=lab.get_data_path() / 'cache')
80 model = GPT2LMHeadModel.from_pretrained('gpt2', cache_dir=lab.get_data_path() / 'cache')
Set the model to eval mode
82 model.eval()
Prompts to use for sampling
85 prompt = 'I saw an interesting dream last night. '
88 with monit.section('greedy'):
89 sample(model, tokenizer, GreedySampler(), 4, 32, 128, prompt)
92 with monit.section('temperature=1.'):
93 sample(model, tokenizer, TemperatureSampler(1.), 4, 32, 128, prompt)
94 with monit.section('temperature=.1'):
95 sample(model, tokenizer, TemperatureSampler(.1), 4, 32, 128, prompt)
96 with monit.section('temperature=10.'):
97 sample(model, tokenizer, TemperatureSampler(10.), 4, 32, 128, prompt)
100 with monit.section('top_k=5'):
101 sample(model, tokenizer, TopKSampler(2, TemperatureSampler(1.)), 4, 32, 128, prompt)
104 with monit.section('nucleus p=.95'):
105 sample(model, tokenizer, NucleusSampler(0.95, TemperatureSampler(1.)), 4, 32, 128, prompt)
106 with monit.section('nucleus p=.1'):
107 sample(model, tokenizer, NucleusSampler(0.1, TemperatureSampler(1.)), 4, 32, 128, prompt)
110if __name__ == '__main__':
111 main()