Deep Q Network (DQN) Model

Open In Colab

12import torch
13from torch import nn

Dueling Network ⚔️ Model for Values

We are using a dueling network to calculate Q-values. Intuition behind dueling network architecture is that in most states the action doesn't matter, and in some states the action is significant. Dueling network allows this to be represented very well.

So we create two networks for and and get from them. We share the initial layers of the and networks.

17class Model(nn.Module):
48    def __init__(self):
49        super().__init__()
50        self.conv = nn.Sequential(

The first convolution layer takes a frame and produces a frame

53            nn.Conv2d(in_channels=4, out_channels=32, kernel_size=8, stride=4),
54            nn.ReLU(),

The second convolution layer takes a frame and produces a frame

58            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2),
59            nn.ReLU(),

The third convolution layer takes a frame and produces a frame

63            nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1),
64            nn.ReLU(),
65        )

A fully connected layer takes the flattened frame from third convolution layer, and outputs features

70        self.lin = nn.Linear(in_features=7 * 7 * 64, out_features=512)
71        self.activation = nn.ReLU()

This head gives the state value

74        self.state_value = nn.Sequential(
75            nn.Linear(in_features=512, out_features=256),
76            nn.ReLU(),
77            nn.Linear(in_features=256, out_features=1),
78        )

This head gives the action value

80        self.action_value = nn.Sequential(
81            nn.Linear(in_features=512, out_features=256),
82            nn.ReLU(),
83            nn.Linear(in_features=256, out_features=4),
84        )
86    def forward(self, obs: torch.Tensor):

Convolution

88        h = self.conv(obs)

Reshape for linear layers

90        h = h.reshape((-1, 7 * 7 * 64))

Linear layer

93        h = self.activation(self.lin(h))

96        action_value = self.action_value(h)

98        state_value = self.state_value(h)

101        action_score_centered = action_value - action_value.mean(dim=-1, keepdim=True)

103        q = state_value + action_score_centered
104
105        return q