12import torch
13from torch import nn
14
15from labml_helpers.module import Module
We are using a dueling network to calculate Q-values. Intuition behind dueling network architecture is that in most states the action doesn't matter, and in some states the action is significant. Dueling network allows this to be represented very well.
So we create two networks for and and get from them. We share the initial layers of the and networks.
18class Model(Module):
49 def __init__(self):
50 super().__init__()
51 self.conv = nn.Sequential(
The first convolution layer takes a frame and produces a frame
54 nn.Conv2d(in_channels=4, out_channels=32, kernel_size=8, stride=4),
55 nn.ReLU(),
The second convolution layer takes a frame and produces a frame
59 nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2),
60 nn.ReLU(),
The third convolution layer takes a frame and produces a frame
64 nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1),
65 nn.ReLU(),
66 )
A fully connected layer takes the flattened frame from third convolution layer, and outputs features
71 self.lin = nn.Linear(in_features=7 * 7 * 64, out_features=512)
72 self.activation = nn.ReLU()
This head gives the state value
75 self.state_value = nn.Sequential(
76 nn.Linear(in_features=512, out_features=256),
77 nn.ReLU(),
78 nn.Linear(in_features=256, out_features=1),
79 )
This head gives the action value
81 self.action_value = nn.Sequential(
82 nn.Linear(in_features=512, out_features=256),
83 nn.ReLU(),
84 nn.Linear(in_features=256, out_features=4),
85 )
87 def forward(self, obs: torch.Tensor):
Convolution
89 h = self.conv(obs)
Reshape for linear layers
91 h = h.reshape((-1, 7 * 7 * 64))
Linear layer
94 h = self.activation(self.lin(h))
97 action_value = self.action_value(h)
99 state_value = self.state_value(h)
102 action_score_centered = action_value - action_value.mean(dim=-1, keepdim=True)
104 q = state_value + action_score_centered
105
106 return q