CIFAR 10 で大規模モデルをトレーニングする

これはCIFAR 10の大型モデルを蒸留用にトレーニングします

13import torch.nn as nn
14
15from labml import experiment, logger
16from labml.configs import option
17from labml_nn.experiments.cifar10 import CIFAR10Configs, CIFAR10VGGModel
18from labml_nn.normalization.batch_norm import BatchNorm

コンフィギュレーション

データセットに関連するすべての構成、オプティマイザー、トレーニングループを定義するものを使用していますCIFAR10Configs

21class Configs(CIFAR10Configs):
28    pass

CIFAR-10 分類用の VGG スタイルモデル

これは一般的な VGG スタイルのアーキテクチャに由来します

31class LargeModel(CIFAR10VGGModel):

コンボリューションレイヤーとアクティベーションの作成

38    def conv_block(self, in_channels, out_channels) -> nn.Module:
42        return nn.Sequential(

ドロップアウト

44            nn.Dropout(0.1),

コンボリューションレイヤー

46            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),

バッチ正規化

48            BatchNorm(out_channels, track_running_stats=False),

ReLU アクティベーション

50            nn.ReLU(inplace=True),
51        )
53    def __init__(self):

与えられた畳み込みサイズ (チャネル) でモデルを作成

55        super().__init__([[64, 64], [128, 128], [256, 256, 256], [512, 512, 512], [512, 512, 512]])

モデル作成

58@option(Configs.model)
59def _large_model(c: Configs):
63    return LargeModel().to(c.device)
66def main():

実験を作成

68    experiment.create(name='cifar10', comment='large model')

構成の作成

70    conf = Configs()

構成をロード

72    experiment.configs(conf, {
73        'optimizer.optimizer': 'Adam',
74        'optimizer.learning_rate': 2.5e-4,
75        'is_save_models': True,
76        'epochs': 20,
77    })

保存/読み込み用のモデルを設定

79    experiment.add_pytorch_models({'model': conf.model})

モデル内のパラメータの数を出力します

81    logger.inspect(params=(sum(p.numel() for p in conf.model.parameters() if p.requires_grad)))

実験を開始し、トレーニングループを実行します

83    with experiment.start():
84        conf.run()

88if __name__ == '__main__':
89    main()