1import random
2from pathlib import PurePath, Path
3from typing import List, Callable, Dict, Optional
4
5from torchvision import datasets, transforms
6
7import torch
8from labml import lab
9from labml import monit
10from labml.configs import BaseConfigs
11from labml.configs import aggregate, option
12from labml.utils.download import download_file
13from torch.utils.data import DataLoader
14from torch.utils.data import IterableDataset, Dataset
17def _mnist_dataset(is_train, transform):
18 return datasets.MNIST(str(lab.get_data_path()),
19 train=is_train,
20 download=True,
21 transform=transform)
Configurable MNIST data set.
Arguments: dataset_name (str): name of the data set,
MNIST
dataset_transforms (torchvision.transforms.Compose): image transformations train_dataset (torchvision.datasets.MNIST): training dataset valid_dataset (torchvision.datasets.MNIST): validation dataset
train_loader (torch.utils.data.DataLoader): training data loader valid_loader (torch.utils.data.DataLoader): validation data loader
train_batch_size (int): training batch size valid_batch_size (int): validation batch size
train_loader_shuffle (bool): whether to shuffle training data valid_loader_shuffle (bool): whether to shuffle validation data
24class MNISTConfigs(BaseConfigs):
44 dataset_name: str = 'MNIST'
45 dataset_transforms: transforms.Compose
46 train_dataset: datasets.MNIST
47 valid_dataset: datasets.MNIST
48
49 train_loader: DataLoader
50 valid_loader: DataLoader
51
52 train_batch_size: int = 64
53 valid_batch_size: int = 1024
54
55 train_loader_shuffle: bool = True
56 valid_loader_shuffle: bool = False
Configurable CIFAR 10 data set.
Arguments: dataset_name (str): name of the data set,
CIFAR10
dataset_transforms (torchvision.transforms.Compose): image transformations train_dataset (torchvision.datasets.CIFAR10): training dataset valid_dataset (torchvision.datasets.CIFAR10): validation dataset
train_loader (torch.utils.data.DataLoader): training data loader valid_loader (torch.utils.data.DataLoader): validation data loader
train_batch_size (int): training batch size valid_batch_size (int): validation batch size
train_loader_shuffle (bool): whether to shuffle training data valid_loader_shuffle (bool): whether to shuffle validation data
59@option(MNISTConfigs.dataset_transforms)
60def mnist_transforms():
61 return transforms.Compose([
62 transforms.ToTensor(),
63 transforms.Normalize((0.1307,), (0.3081,))
64 ])
65
66
67@option(MNISTConfigs.train_dataset)
68def mnist_train_dataset(c: MNISTConfigs):
69 return _mnist_dataset(True, c.dataset_transforms)
70
71
72@option(MNISTConfigs.valid_dataset)
73def mnist_valid_dataset(c: MNISTConfigs):
74 return _mnist_dataset(False, c.dataset_transforms)
75
76
77@option(MNISTConfigs.train_loader)
78def mnist_train_loader(c: MNISTConfigs):
79 return DataLoader(c.train_dataset,
80 batch_size=c.train_batch_size,
81 shuffle=c.train_loader_shuffle)
82
83
84@option(MNISTConfigs.valid_loader)
85def mnist_valid_loader(c: MNISTConfigs):
86 return DataLoader(c.valid_dataset,
87 batch_size=c.valid_batch_size,
88 shuffle=c.valid_loader_shuffle)
89
90
91aggregate(MNISTConfigs.dataset_name, 'MNIST',
92 (MNISTConfigs.dataset_transforms, 'mnist_transforms'),
93 (MNISTConfigs.train_dataset, 'mnist_train_dataset'),
94 (MNISTConfigs.valid_dataset, 'mnist_valid_dataset'),
95 (MNISTConfigs.train_loader, 'mnist_train_loader'),
96 (MNISTConfigs.valid_loader, 'mnist_valid_loader'))
97
98
99def _cifar_dataset(is_train, transform):
100 return datasets.CIFAR10(str(lab.get_data_path()),
101 train=is_train,
102 download=True,
103 transform=transform)
104
105
106class CIFAR10Configs(BaseConfigs):
125 dataset_name: str = 'CIFAR10'
126 dataset_transforms: transforms.Compose
127 train_dataset: datasets.CIFAR10
128 valid_dataset: datasets.CIFAR10
129
130 train_loader: DataLoader
131 valid_loader: DataLoader
132
133 train_batch_size: int = 64
134 valid_batch_size: int = 1024
135
136 train_loader_shuffle: bool = True
137 valid_loader_shuffle: bool = False
140@CIFAR10Configs.calc(CIFAR10Configs.dataset_transforms)
141def cifar10_transforms():
142 return transforms.Compose([
143 transforms.ToTensor(),
144 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
145 ])
146
147
148@CIFAR10Configs.calc(CIFAR10Configs.train_dataset)
149def cifar10_train_dataset(c: CIFAR10Configs):
150 return _cifar_dataset(True, c.dataset_transforms)
151
152
153@CIFAR10Configs.calc(CIFAR10Configs.valid_dataset)
154def cifar10_valid_dataset(c: CIFAR10Configs):
155 return _cifar_dataset(False, c.dataset_transforms)
156
157
158@CIFAR10Configs.calc(CIFAR10Configs.train_loader)
159def cifar10_train_loader(c: CIFAR10Configs):
160 return DataLoader(c.train_dataset,
161 batch_size=c.train_batch_size,
162 shuffle=c.train_loader_shuffle)
163
164
165@CIFAR10Configs.calc(CIFAR10Configs.valid_loader)
166def cifar10_valid_loader(c: CIFAR10Configs):
167 return DataLoader(c.valid_dataset,
168 batch_size=c.valid_batch_size,
169 shuffle=c.valid_loader_shuffle)
170
171
172CIFAR10Configs.aggregate(CIFAR10Configs.dataset_name, 'CIFAR10',
173 (CIFAR10Configs.dataset_transforms, 'cifar10_transforms'),
174 (CIFAR10Configs.train_dataset, 'cifar10_train_dataset'),
175 (CIFAR10Configs.valid_dataset, 'cifar10_valid_dataset'),
176 (CIFAR10Configs.train_loader, 'cifar10_train_loader'),
177 (CIFAR10Configs.valid_loader, 'cifar10_valid_loader'))
178
179
180class TextDataset:
181 itos: List[str]
182 stoi: Dict[str, int]
183 n_tokens: int
184 train: str
185 valid: str
186 standard_tokens: List[str] = []
187
188 @staticmethod
189 def load(path: PurePath):
190 with open(str(path), 'r') as f:
191 return f.read()
192
193 def __init__(self, path: PurePath, tokenizer: Callable, train: str, valid: str, test: str, *,
194 n_tokens: Optional[int] = None,
195 stoi: Optional[Dict[str, int]] = None,
196 itos: Optional[List[str]] = None):
197 self.test = test
198 self.valid = valid
199 self.train = train
200 self.tokenizer = tokenizer
201 self.path = path
202
203 if n_tokens or stoi or itos:
204 assert stoi and itos and n_tokens
205 self.n_tokens = n_tokens
206 self.stoi = stoi
207 self.itos = itos
208 else:
209 self.n_tokens = len(self.standard_tokens)
210 self.stoi = {t: i for i, t in enumerate(self.standard_tokens)}
211
212 with monit.section("Tokenize"):
213 tokens = self.tokenizer(self.train) + self.tokenizer(self.valid)
214 tokens = sorted(list(set(tokens)))
215
216 for t in monit.iterate("Build vocabulary", tokens):
217 self.stoi[t] = self.n_tokens
218 self.n_tokens += 1
219
220 self.itos = [''] * self.n_tokens
221 for t, n in self.stoi.items():
222 self.itos[n] = t
223
224 def text_to_i(self, text: str) -> torch.Tensor:
225 tokens = self.tokenizer(text)
226 return torch.tensor([self.stoi[s] for s in tokens if s in self.stoi], dtype=torch.long)
227
228 def __repr__(self):
229 return f'{len(self.train) / 1_000_000 :,.2f}M, {len(self.valid) / 1_000_000 :,.2f}M - {str(self.path)}'
230
231
232class SequentialDataLoader(IterableDataset):
233 def __init__(self, *, text: str, dataset: TextDataset,
234 batch_size: int, seq_len: int):
235 self.seq_len = seq_len
236 data = dataset.text_to_i(text)
237 n_batch = data.shape[0] // batch_size
238 data = data.narrow(0, 0, n_batch * batch_size)
239 data = data.view(batch_size, -1).t().contiguous()
240 self.data = data
241
242 def __len__(self):
243 return self.data.shape[0] // self.seq_len
244
245 def __iter__(self):
246 self.idx = 0
247 return self
248
249 def __next__(self):
250 if self.idx >= self.data.shape[0] - 1:
251 raise StopIteration()
252
253 seq_len = min(self.seq_len, self.data.shape[0] - 1 - self.idx)
254 i = self.idx + seq_len
255 data = self.data[self.idx: i]
256 target = self.data[self.idx + 1: i + 1]
257 self.idx = i
258 return data, target
259
260 def __getitem__(self, idx):
261 seq_len = min(self.seq_len, self.data.shape[0] - 1 - idx)
262 i = idx + seq_len
263 data = self.data[idx: i]
264 target = self.data[idx + 1: i + 1]
265 return data, target
266
267
268class SequentialUnBatchedDataset(Dataset):
269 def __init__(self, *, text: str, dataset: TextDataset,
270 seq_len: int,
271 is_random_offset: bool = True):
272 self.is_random_offset = is_random_offset
273 self.seq_len = seq_len
274 self.data = dataset.text_to_i(text)
275
276 def __len__(self):
277 return (self.data.shape[0] - 1) // self.seq_len
278
279 def __getitem__(self, idx):
280 start = idx * self.seq_len
281 assert start + self.seq_len + 1 <= self.data.shape[0]
282 if self.is_random_offset:
283 start += random.randint(0, min(self.seq_len - 1, self.data.shape[0] - (start + self.seq_len + 1)))
284
285 end = start + self.seq_len
286 data = self.data[start: end]
287 target = self.data[start + 1: end + 1]
288 return data, target
289
290
291class TextFileDataset(TextDataset):
292 standard_tokens = []
293
294 def __init__(self, path: PurePath, tokenizer: Callable, *,
295 url: Optional[str] = None,
296 filter_subset: Optional[int] = None):
297 path = Path(path)
298 if not path.exists():
299 if not url:
300 raise FileNotFoundError(str(path))
301 else:
302 download_file(url, path)
303
304 with monit.section("Load data"):
305 text = self.load(path)
306 if filter_subset:
307 text = text[:filter_subset]
308 split = int(len(text) * .9)
309 train = text[:split]
310 valid = text[split:]
311
312 super().__init__(path, tokenizer, train, valid, '')
313
314
315def _test_tiny_shakespeare():
316 from labml import lab
317 _ = TextFileDataset(lab.get_data_path() / 'tiny_shakespeare.txt', lambda x: list(x),
318 url='https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt')
319
320
321if __name__ == '__main__':
322 _test_tiny_shakespeare()