This creates data for Parity Task from the paper Adaptive Computation Time for Recurrent Neural Networks.
The input of the parity task is a vector with 's 's and 's. The output is the parity of 's - one if there is an odd number of 's and zero otherwise. The input is generated by making a random number of elements in the vector either or 's.
19from typing import Tuple
20
21import torch
22from torch.utils.data import Dataset
25class ParityDataset(Dataset):
n_samples
is the number of samples n_elems
is the number of elements in the input vector30 def __init__(self, n_samples: int, n_elems: int = 64):
35 self.n_samples = n_samples
36 self.n_elems = n_elems
Size of the dataset
38 def __len__(self):
42 return self.n_samples
Generate a sample
44 def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
Empty vector
50 x = torch.zeros((self.n_elems,))
Number of non-zero elements - a random number between and total number of elements
52 n_non_zero = torch.randint(1, self.n_elems + 1, (1,)).item()
Fill non-zero elements with 's and 's
54 x[:n_non_zero] = torch.randint(0, 2, (n_non_zero,)) * 2 - 1
Randomly permute the elements
56 x = x[torch.randperm(self.n_elems)]
The parity
59 y = (x == 1.).sum() % 2
62 return x, y